
Beyond dimension two: 
A test for higher-order tail 
risk

by Carsten Bormann, Julia Schaumburg, 
Melanie Schienle 

No. 80  |  JANUARY 2016

WORKING PAPER SERIES IN ECONOMICS

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft econpapers.wiwi.kit.edu



Impressum

Karlsruher Institut für Technologie (KIT)

Fakultät für Wirtschaftswissenschaften

Institut für Volkswirtschaftslehre (ECON)

Schlossbezirk 12

76131 Karlsruhe

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft 

Working Paper Series in Economics

No. 80, January 2016

ISSN  2190-9806

econpapers.wiwi.kit.edu



1

Beyond dimension two: A test for higher-order tail risk

Carsten Bormann

Karlsruhe Institute of Technology, Germany

Melanie Schienle

Karlsruhe Institute of Technology, Germany

Julia Schaumburg?

VU University Amsterdam and Tinbergen Institute, The Netherlands

? We thank Andrew Patton and two anonymous referees for many helpful comments that

substantially improved the paper. This work was supported by the European Union Seventh

Framework Programme (320270 - SYRTO to J.S.) and Deutsche Forschungsgemeinschaft

(SCHI-1127 to M.S.).



2

Abstract

In practice, multivariate dependencies between extreme risks are often only assessed in

a pairwise way. We propose a test for detecting situations when such pairwise measures

are inadequate and give incomplete results. This occurs when a significant portion of the

multivariate dependence structure in the tails is of higher dimension than two. Our test statistic

is based on a decomposition of the stable tail dependence function describing multivariate tail

dependence. The asymptotic properties of the test are provided and a bootstrap based finite

sample version of the test is proposed. A simulation study documents good size and power

properties of the test including settings with time-series components and factor models. In

an application to stock indices for non-crisis times, pairwise tail models seem appropriate for

global markets while the test finds them not admissible for the tightly interconnected European

market. From 2007/08 on, however, higher order dependencies generally increase and require a

multivariate tail model in all cases.

Keywords: decomposition of multivariate tail dependence, multivariate extreme values,

stable tail dependence function, extreme dependence modeling

JEL classification: C01, C46, C58

1 Introduction

Studying extreme co-movements in multidimensional systems is a key concern in finance and

insurance. However, tail dependence structures of multivariate distributions are mostly treated

in bivariate setups, see for instance Poon et al. (2004) and Klugman & Parsa (1999), but

also Straetmans et al. (2008), Li (2013), Rodriguez (2007), among many others. Pairwise

simplification is not only standard when analyzing financial systems but is also widely used for

studying extreme environmental and weather risks (see de Haan & de Ronde (1998) and Ghosh

(2010)). This is due to the fact that in practice, bivariate models are more easily tractable and

computationally more appealing. But also from a theoretical point of view, statistical properties

of a large group of estimators are only known up to dimension two (Coles et al. (1991), Joe et al.

(1991), de Haan et al. (2008), Guillotte et al. (2011)). Yet, for a variety of empirical settings,

there are periods in time during which a pairwise approach is too restrictive, as joint extremes

occur in cross–sections of dimension three or higher. In particular during the recent financial

crisis, markets became increasingly dependent. The financial contagion literature provides a lot

of evidence that the major part of this rising interconnectedness was due to complex higher order

interdependencies, which could not have been detected by standard pairwise tail dependence
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measures (see, e.g., Longstaff (2010), Brunnermeier & Pedersen (2009)). In such situations, the

most common bivariate measures for tail dependence, such as the tail dependence coefficient

(see Straetmans et al. (2008), Poon et al. (2004), Hartmann et al. (2004)), bivariate copulas (see,

e.g. Li (2013), Rodriguez (2007), and references therein), or simple product moment correlation

coefficients and correlation matrices fail to explicitly account for a large amount of the complex

dependence structure among extreme risks in the system. This leads to severe underestimations

of the effects of extreme comovements. For a discussion of the limitations of common bivariate

measures of dependence, see also Embrechts (2009) and Mikosch (2006).

We propose a test that indicates whether pairwise modeling of multivariate tail dependence

of a d–dimensional random vector X = (X(1), ..., X(d))′ with d > 2 is adequate, or whether it

implies significantly different and thus incomplete tail dependence structures. The test is based

on the stable tail dependence function (STDF), which was first introduced in Huang (1992)

(see also de Haan & Ferreira (2006) and Einmahl et al. (2012)). The STDF maps the univariate

tails of a random vector to their joint limit distribution, and therefore completely describes

their extremal dependence structure. It is a general and flexible concept of tail dependence

and allows for straightforward non-parametric estimation, bearing a smaller risk of model

misspecification than alternative parametric approaches. Furthermore, its statistical properties

are well understood for X of dimension beyond two (Einmahl et al. (2012), Bücher et al. (2014)).

Moreover, its rather conservative definition of multivariate extreme events fits the needs of

(financial) risk management (Segers (2012)).

The main idea of the test is to decompose the STDF for X into probabilities of univariate

extreme events, the STDFs of all possible bivariate pairs within X, and a remainder term

capturing extreme events in dimensions three to d. We refer to the latter as higher order tail

dependencies (HOTDs), and denote tail events as multivariate when they comprise three or more

extremes in the cross-section. If an estimate of the remainder term is not significantly different

from zero, we conclude that tail dependence in dimension d can be captured sufficiently well

by analyzing only bivariate tails. However, if we reject the null hypothesis that HOTDs have

no influence, ignoring high-dimensional joint extreme events leads to underestimation of the

actual tail risk dependence, which is then driven by a substantial portion of joint extremes in

dimension three and higher. The asymptotic properties of the test statistic are derived and

a bootstrap implementation scheme for finite samples is proposed. Simulation studies with

standard multivariate risk structures for the iid and ARMA–GARCH cases document good size

and power properties of the test in finite samples. Moreover, our simulations highlight the need

to filter the data for conditional heteroskedasticity before applying the test to financial time

series.
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Our empirical application deals with the influence of HOTDs in international stock markets.

Asset allocation and portfolio diversification, as well as systemic risk assessment require a most

accurate picture of tail dependencies between financial markets. Univariate tail losses within

a portfolio can be diversified by holding tail independent assets. Bivariate tail dependence

eliminates such tail risk diversification opportunities between two assets, as large losses tend

to occur simultaneously. The same reasoning applies to higher–dimensional tail risk: Whenever

extreme losses of three or more assets coincide, multivariate tail risk cannot be diversified

anymore. Ang & Chen (2002), Poon et al. (2004), Chollete et al. (2011) and others estimate

bivariate tail measures for indices of international stock markets. The common conclusion is that

left bivariate tails, i.e. extreme losses, are dependent, especially intra-continentally. Right tails,

however, tend to be independent. We test for HOTDs within two separate sets of stock market

indices. In a global portfolio including US, Asian-Pacific and European stock indices, we find no

evidence for HOTDs in both left and right tails, until the rise of the financial crisis of 2007. This

finding suggests that global tail diversification possibilities are limited ever since, a finding that

has also been made by Christoffersen et al. (2012) using a dynamic copula approach. Testing

against HOTDs in a multi-country European portfolio, we find strong evidence for HOTDs

during the last decades, which can only partly be explained by serial correlation, time variation,

and a factor reflecting the development of global markets. Our results therefore contribute to

the empirical international finance literature in three points: First, we find that the extent of

intra-European tail dependence is more severe than discovered in former contributions. Second,

higher-order tail effects in European markets are time-varying, and have increased during the

recent financial crisis. Third, multivariate effects in extreme losses on the global level become

relevant in the course of the financial crisis, while extreme gains are largely not affected by

HOTDs. We conclude our empirical application by quantifying the share of HOTDs in tail

dependence. We find time periods in which up to 70% of all bivariate extreme events are in fact

multivariate. Also, in recent years, this share has doubled for losses and even tripled for gains

on the European portfolio.

The rest of the paper is organized as follows. Section 2.1 discusses necessary concepts

from multivariate extreme value theory. Section 2.2 introduces and formalizes test idea, test

asymptotics and finite sample implementation. Finite sample properties are studied in Section

3. Section 4 studies HOTDs between international stock indices. Section 5 concludes. The

Appendix contains supplementary and theoretical results.
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2 Econometric methodology

2.1 Multivariate dependence in extreme tails

For our analysis of extreme risks, we use techniques from multivariate extreme value theory

which we introduce and motivate in the following. Denote by X := (X(1), ..., X(d))′ a d–

dimensional random vector with continuous joint cumulative distribution function (CDF)

FX(x),x := (x(1), ..., x(d)). Its univariate marginal CDFs are denoted by Fj(x
(j)), j = 1, ..., d.

Suppose we observe a sample of n iid draws from the random vector X, collected in the

(n× d) sample matrix X = (X
(1)
n , ...,X

(d)
n ) with X

(j)
n = (X

(j)
1 , ..., X

(j)
n )′, j = 1, ..., d. We write

max(X
(j)
n ) = max(X

(j)
1 , ..., X

(j)
n ) for the sample maximum of margin j. For each marginal, we

assume that there exist normalizing constants a(j)
n ∈ R+, b

(j)
n ∈ R, j = 1, ..., d, and a limiting

distribution GX(x), such that

lim
n→∞

P

(
max(X

(1)
n )− b(1)

n

a
(1)
n

≤ x(1), ...,
max(X

(d)
n )− b(d)

n

a
(d)
n

≤ x(d)

)
= GX(x), (1)

for all continuity points of GX(x). Then, GX(x) is a multivariate extreme value distribution,

and FX(x) is said to be in the domain of attraction of GX(x), which is denoted by FX ∈ D(GX),

see de Haan & Ferreira (2006) and Resnick (1987). Necessary and sufficient conditions for

FX ∈ D(GX) can be found in de Haan & Resnick (1977), Beirlant et al. (2004, p.287), de Haan

& Ferreira (2006), and Resnick (1987). Throughout the paper, we assume that they are fulfilled.

In general, closed-form expressions for GX(x) do not exist. Equation (1) can be written as

lim
n→∞

F n
X (a(1)

n x(1) + b(1)
n , ..., a(d)

n x(d) + b(d)
n ) = GX(x), (2)

implying that the univariate marginals converge individually to one–dimensional extreme value

distributions Gj(x
(j)), which have the standard Fisher–Tippett form

lim
n→∞

F n
j (a(j)

n x(j) + b(j)
n ) = Gj(x

(j)) = exp
(
−(1 + γjx

(j))−1/γj
)
, j = 1, ..., d, (3)

where γj denotes the tail index of margin j (Fréchet (1927), Fisher & Tippett (1928), Gnedenko

(1943)). An equivalent formulation of relation (2), with (3) holding true for all margins, is given

by the concept of the stable tail dependence function (STDF) of X, denoted by `X(x) or `(x)

(Huang (1992), Einmahl et al. (2012)). Equivalent characterizations of GX(x), and thus `(x),

can be obtained via the spectral measure and the exponent measure (de Haan & Ferreira 2006,

Chapter 6) but are less intuitive in interpretation and decomposition. The STDF `(x) : Rd 7→ R+
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is defined as

`(x) = − logGX

(
x(1)−γ1 − 1

γ1

, ...,
x(d)−γd − 1

γd

)
.

The STDF describes the complete dependence structure of the tails of the univariate marginals.

As one can express `(x) as

`(x) = lim
t→0

t−1P
( d⋃
i=1

{F−1
i (1− tx(i)) ≤ X(i)}

)
, t ∈ R+, (4)

the stable tail dependence function (STDF) is an asymptotic measure which can be interpreted

as the scaled asymptotic probability that at least one element of X exceeds an extreme quantile,

that is, X(i) exceeds F−1
i (1− tx(i)), as t→ 0. From this representation, a direct non-parametric

estimate of the STDF can be derived. Also, `(x) can be decomposed into component STDFs of

dimensions lower than d.

There is a rich statistical literature on general properties of the STDF and its estimators (e.g.

Huang (1992), Dietrich et al. (2003), Einmahl et al. (2006), Drees et al. (2006), Einmahl et al.

(2012), Bücher et al. (2014)). Importantly, the STDF is a convex function and homogeneous

of degree one, i.e. `(λx) = λ`(x) for λ ∈ R. Moreover, `(x) ∈ [max(x),x′1 =
∑d

i=1 x
(i)] with

1 representing a d-vector of ones. The lower (upper) bound is attained if X is perfectly

tail dependent (independent), that is, extremes of univariate marginals always (never) occur

simultaneously (Beirlant et al. (2004), de Haan & Ferreira (2006)). Tail (in)dependence is often

also denoted as asymptotic (in)dependence. Numerical values of `(x) close to max(x) indicate

that tails of X are strongly interconnected. Values of `(x) close to x′1 mark the opposite. In

practice, perfect tail dependence is rare.

It is important to note the connection, but also the difference, of the STDF to the so–called

tail copula (TC) which is a closely related metric for tail dependence. The TC of X is defined

as

R(x) = lim
t→0

t−1P
( d⋂
i=1

{F−1
i (1− tx(i)) ≤ X(i)}

)
.

O It only considers joint exceedances to characterize tail dependence, see Schmidt & Stadtmüller

(2006). Sibuya (1960), Joe (1997) and Coles et al. (1998) analyze bivariate tail dependence by

means of the tail dependence coefficient, which corresponds to the bivariate TC at the point

x = (1, 1). Roughly speaking, it describes the tendency of two random variables to jointly exceed

a high threshold. In two dimensions, there is a one-to-one mapping between the TC and the

STDF. Due to the lack of natural ordering in higher dimensions, however, the definition of a
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multivariate extreme event depends on the research objective. There are several reasons why we

prefer the STDF over the TC for our purpose: Firstly, the TC captures only (the most extreme)

parts of the multivariate tail dependence in dimensions d > 2, while the STDF completely

describes it (see Subsection 2.2 for the relationship between the two). Secondly, a practical

issue for large d is that joint d–dimensional exceedances are rarely observed in finite samples.

Unless a sample contains an observation with all marginals being extreme, the TC indicates

tail independence. That is, the TC only considers the most extreme events when all marginals

are simultaneously extreme, and disregards more likely tail events. On the other hand, the

STDF incorporates events in which a single component of X becomes extreme, and hence finite

samples provide more relevant observations. Segers (2012) interpret `(x) as ”trouble in the air”,

whereas R(x) only considers events as extreme when ”the sky is falling”. The STDF is therefore

an important ingredient for a conservative risk monitoring approach, in the sense that not only

the "most extreme" extremes are considered.

2.2 A new test for higher-order tail dependence

We aim to detect the share which HOTDs contribute to overall tail dependence. Hence, we

decompose the STDF for dimension d into TCs for dimensions two to d. In dimension d = 2, from

equation (4) we have that `(x) is the limiting probability of a union of two events; since P(A ∪
B) = P(A) + P(B)− P(A ∩B) for events A and B. Therefore, we have `(x(1), x(2)) = x(1) +

x(2) −R(x(1), x(2)). For similar decompositions in arbitrary dimension 2 < d <∞, additional

notation is required. For I ⊂ {1, ..., d} define the subvectors X(I) := (X(i))i∈I ,x
(I) := (x(i))i∈I ,

and according STDFs as `I(x(I)). Then, in R2<d<∞, using the inclusion–exclusion principle, we

have

`(x) =
d∑
i=1

x(i) −
∑
i<j≤d

Rij(x
(i,j)) +

∑
h<i<j≤d

Rhij(x
(h,i,j))− ...+ (−1)d+1R(x)︸ ︷︷ ︸

=:A

, (5)

where A denotes the portion HOTDs contribute to ”global” tail dependence in X, that is,

the tail dependence of the entire random vector X. Provided that global tail dependence

is only caused by bivariate extreme events, i.e. by the first two terms of equation (5), A
equals zero. In this case, higher dimensional joint extremes are irrelevant. When substituting

Rij(x
(i), x(j)) = x(i) + x(j) − `ij(x(i), x(j)), i < j ≤ d, equation (5) yields

`(x) = (2− d)
d∑
i=1

x(i) +
∑
i<j≤d

`ij(x
(i,j)) +A, (6)
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which decomposes global tail dependence into asymptotic probabilities for univariate extremes

and STDFs for any bivariate combination and HOTDs.

Using equation (6) we can test whether extreme events in dimensions larger than two have

a statistically significant impact, that is, if two–dimensional tails explain tail dependence in

dimension d > 2 sufficiently well. Formally, if A = 0, we have

∆ := `(x)− (2− d)
d∑
i=1

x(i) −
∑
i<j≤d

`ij(x
(i,j)) = 0. (7)

In this case, bivariate extreme relations are sufficient for capturing the full global tail

dependence. Hence, the null hypothesis that the impact of higher–order tail dependencies is

negligible can be formulated as

H0 : ∆ = 0. (8)

If ∆ substantially deviates from zero, the null is rejected. With x = 1, it is possible to show

that ∆ ∈ [0,
∑d−2

i=1 i], d > 2.

The following proposition clarifies that testing for ∆ = 0 is not equivalent to testing whether

X is tail independent. Thus, multivariate distributions exist which are globally tail dependent

but have ∆ = 0. Hence their global tail dependence is exclusively caused by bivariate tails. A

test for tail independence is proposed in Draisma et al. (2004).

Proposition 2.1 a

If X is tail independent, that is if all bivariate tails of X are tail independent, then ∆ = 0. The

reverse does not hold.

This can, e.g., be easily shown for the family of distributions which we use in the simulation

setting in Section 3.

In order to apply the test, we have to estimate the STDF of X, `X(x), and the STDFs for

bivariate pairs. Let X(i)
n:m denote the m–th largest order statistic of margin X(i), and let 1(C)

be the indicator function for event C. In equation (4), replacing the running variable t by k/n

and the extreme quantiles F−1
i (1− tx(i)) by X(i)

n:n+0.5−kx(i) we use the following non-parametric

estimator for the STDF (see Huang (1992) and Einmahl et al. (2012))

ˆ̀(x) =
1

k

n∑
i=1

1
{ d⋃
j=1

{X(j)
i ≥ X

(j)

n:n+0.5−kx(j)}
}
, n→∞, k →∞, k

n
→ 0, (9)

x = (x(1), ..., x(d)). Under some technical conditions, the empirical process
√
k(ˆ̀(x)− `(x))

converges to a sum of a centered Gaussian field and univariate centered Gaussian processes with
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given covariance structure (Einmahl et al. (2012), Bücher et al. (2014)). If X is asymptotically

independent, ˆ̀(x) is still asymptotically normal but with degenerate variance (Hüsler & Li

2009). Note, ˆ̀(x) is invariant against monotone transformations. For simplicity, we fix x = 1,

which is standard in the applied extreme value literature, see e.g. Hartmann et al. (2004). In

this case, for each marginal, the threshold equals X(i)
n:n+1/2−k. The asymptotic distribution of

ˆ̀(1) simplifies to
√
k
(

ˆ̀(1)− `(1)
)

d→ N(0, σ2
ˆ̀),

where closed form expressions of σ2
ˆ̀ can be reconstructed from theorem 4.6 in Einmahl et al.

(2012). Plugging ˆ̀(1) into ∆ yields the empirical test statistic

∆̂ := ˆ̀(1)− 2d+ d2 −
∑
i<j≤d

ˆ̀
ij (1) . (10)

These considerations lead us to the asymptotic distribution of the test statistic, which is

given next.

Proposition 2.2 Assume FX ∈ D(GX). Furthermore, let the following assumptions hold:

(A1) There exists a constant β > 0 such that for t ↓ 0 it holds that t−1P(
⋃d
i=1 F

−1
i (1− tx(i)) ≤

X(i)) = `(x) +O(tβ) uniformly on the unit simplex in Rd.

(A2) The threshold parameter k →∞ for n→∞ with k = o(n2β/(1 + 2β)) with β from (A1).

Then,
√
k(∆̂−∆)

d→ N(0, σ2
∆̂

), (11)

where σ2
∆̂
is the sum of all entries of the covariance matrix of

(
ˆ̀(1), (ˆ̀

ij(1, 1))i<j≤d

)
.

For the proof, please see the Appendix. Assumption (A1) imposes that t−1P(
⋃d
i=1 F

−1
i (1−

tx(i)) ≤ X(i)) exists for t small and converges to the STDF at a certain speed. This second-order

condition refines the base assumption of max-domain attraction of FX. The second assumption

restricts the speed with which k grows to infinity, and in combination with (A1) guarantees that

an asymptotic bias term for the left hand side of equation (11) vanishes (see Resnick & de Haan

(1996), Einmahl et al. (2008) for details). According to Bücher et al. (2014) a smoothness

assumption for the STDF is not required. In particular, we do not need to impose that partial

derivatives of ` exist for the asymptotic result to hold. Such an assumption might be too rigid, as

it would, e.g., exclude factor models, which are practically important in financial applications.
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For obtaining Proposition 2.2, we therefore rely on asymptotic results by Bücher et al. (2014),

which do not require the existence of partial derivatives of the STDF, but which are also no

longer uniform but yield convergence of ˆ̀(x) in a weaker sense.1

In both the simulation study and the empirical application in Sections 3 and 4, we restrict

the test to dimension 7. However, if X exhibits tail dependence in dimension d larger than 7,

it necessarily exhibits tail dependence in dimensions 3 ≤ g < d. Thus, the asymptotic power of

the test also increases with larger dimensions. Subsection 3.2 further discusses these details, in

the context of the results on the empirical power in the simulation settings. Also, the test can

be readily adapted to detect whether joint extremes of dimension 3 < g ≤ d are significant.

2.3 Finite sample version of the test

Although it is possible to derive the explicit form and calculate empirical versions of the

asymptotic variance of the test statistic, a bootstrap version is practically superior. The reason

is that bootstrapping σ2
∆̂
works under milder conditions, in particular if X exhibits asymptotic

dependence (Bücher & Dette 2013). In contrast, direct estimation of σ2
∆̂

may require the

estimation of partial derivatives of the STDF and of covariances between the different STDFs.

In principle, a weighted least squares based estimator for such partial derivatives of the STDF

exists, but its statistical properties have only been established for dimension d = 2 so far (see

Peng & Qi 2006). Furthermore, smoothness assumptions for the STDF might not be met. In

such cases, estimating the partial derivatives is not admissible (Bücher & Dette 2013).

As our goal is to bootstrap extremal observations, we do not resample from the full sample,

but only from a subsample (Politis & Romano (1994)). Otherwise, an asymptotically vanishing

bias term of ∆̂, inherited from ˆ̀X (see Huang (1992)), might distort the bootstrap distribution.

Peng (2010) propose a similar approach and successfully employ a subsample size of n0.95. Qi

(2008), El-Nouty & Guillou (2000), Danielsson et al. (2001), Geluk & de Haan (2002) generally

document the benefits of subsampling for pointwise extreme value statistics. We construct

rejection regions for the test from the asymptotic normal distribution of ∆̂ with the resampled

form of the variance. We explicitly mark if an estimator θ̂ depends on the threshold parameter

k by writing θ̂(k). In summary, we proceed along the following six steps for obtaining a test

decision:

(1) Choose the threshold parameter, denoted by k∗, for ∆̂ from the sample X.

(2) Calculate ˆ̀(k∗), and any ˆ̀
i(k
∗), i ∈ I(d)

(2) , to determine the full sample test statistic ∆̂(k∗)

from X.

1 In particular, Einmahl et al. (2012) show weak convergence of the empirical process
√
k(ˆ̀(x)− `(x)) for bounded functions in the

sup-norm, while Bücher et al. (2014) show convergence for locally bounded functions in the so-called hypi-semimetric.
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(3) Draw at least B = 500 bootstrap samples with replacement from X with sample size

n∗ = n0.95 and denote the resulting bootstrap samples by X∗1, ...,X
∗
B.

(4) For j = 1, ..., B, estimate ∆̂(k∗) from the bootstrap samples X∗1, ...,X
∗
B, yielding B

bootstrapped estimates ∆̂(k∗)1, ..., ∆̂(k∗)B.

(5) Estimate σ2
∆̂
from the bootstrapped estimates in the previous step by its empirical analogue.

(6) On a 1− α confidence level reject H0 : ∆ = 0 if 0 < ∆̂(k∗) + zασ̂∆̂(k∗), where z
α denotes the

α quantile of the standard normal distribution.2

A theoretically optimal, data driven choice of the threshold parameter k should balance

the bias–variance trade–off that is inherent in the estimation of `(x). Finding such a solution

and deriving its optimality properties is non-standard even in the univariate case and is thus

beyond the scope of this paper. In our simulations we choose k randomly from an interval in

order to minimize possible distortions from a poorly chosen k. In the application, we estimate ∆

over a grid of different values for k and calculate the median over this set of estimates.3 Further

details can be found in the respective sections. For alternative, purely data-driven procedures for

determining k in a univariate setup, we refer to Frahm et al. (2005) and Schmidt & Stadtmüller

(2006).

For time series data, issues of short-range serial dependence can be addressed by

implementing a blocked version of the bootstrap providing appropriate up to second moment

adjustments, see, e.g., Straetmans et al. (2008) with an asymptotically optimal choice of block

length of order n1/3 according to Hall et al. (1995). Instead, however, we use appropriate

GARCH-type filtered observations before applying the test. With this we also control for and

amend higher order moment effects and volatility clustering of heteroskedastic financial data

(McNeil & Frey (2000), Poon et al. (2004)). See Section 3.3. for details.

3 Simulation study

3.1 Size and power

In this subsection, we evaluate the empirical size and power of the test in finite samples in an

iid setting. Results for time series data are presented in Subsection 3.3. We simulate from two

types of distribution families with various subspecifications, for which we know whether the null

of no significant HOTDs is true. In particular, we focus on the class of meta t–distributions and

2 Note, a normal approximation for ∆̂ is theoretically not justified under tail independence, i.e. `(x) =
∑d
i=1 x

(i); then, it holds
σ2

ˆ̀ = σ2
∆̂

= 0 and the distributions of both ˆ̀ and ∆̂ are degenerate, while the theoretical ∆ is zero, i.e. the null is true. However, in
such situations, the test typically indicates the correct decision not to reject the null.
3Specifically, for a sample size of 750, k ∈ {8, 9, ..., 48} in dimension three and k ∈ {8, 9, ..., 30} in dimension 7.
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max factor models, which are both commonly used in financial risk management (McNeil et al.

(2006), Fama & French (1992)). The meta t–distribution is a generalization of the multivariate t–

distribution and the t–copula, and max factor models have the same tail dependence structure as

factor models (Einmahl et al. (2012)). We employ the finite sample version of the test introduced

in Subsection 2.3. All simulations are repeated S = 500 times.

Model dimensions are d ∈ {3, 5, 7}. For a power analysis, considering larger dimensions

is often not necessary, as higher order tail dependencies of moderate order are sufficient for

concluding that HOTDs are significant.

Let Ct
ν,P (x) denote the t–copula with ν degrees of freedom, and dispersion matrix P .

Following Demarta & McNeil (2005),

Ct
ν,P (u) =

∫ t−1
ν (u(1))

−∞
· · ·
∫ t−1

ν (u(d))

−∞

Γ((ν + d)/2)

Γ(ν/2)
√

(πν)d|P |
(1 + ν−1(x′P−1x))−(ν+d)/2dx, (12)

where t−1
ν (u(i)) denotes the quantile transform of a t-distribution with ν degrees of freedom

for margin i, and Γ(·) is the gamma function. According to Hua & Joe (2011), the t-copula

is of second-order regular variation and thus fulfills the assumptions of Proposition 2.2. In

contrast to a classical t–copula, meta t–distributions allow the degrees of freedom of marginals

ν
(i)
m to differ from the degrees of freedom of the copula, denoted by νC . For the simulation,

we choose νC ∈ {5, 10, 15, 20}, νm := ν
(i)
m = 5, i = 1, ..., d, and P = (0.5)i 6=j, Pii = 1. Thus, we

consider equicorrelated t–distributions with common degrees of freedom νm that are linked by

the t–copula with νC degrees of freedom. Exploiting results from Demarta & McNeil (2005)

and Nikoloulopoulos et al. (2009, theorem 2.3), it is possible to show, that for the classical

multivariate t–distribution the theoretical values of our test statistic ∆ are larger than zero

as the t-copula is capable of producing joint extremes in dimension d > 2; ∆ increases if the

degrees of freedom of the copula decreases, and/or if pairwise correlation increases. It equals

zero if the correlation parameter equals −1. A meta t–distribution comprises the widely used

multivariate t–distribution whenever νC = νm.4

In finance, often factor models are applied, in which asset returns X(j) depend on common

factors Z(i) in a linear fashion. Max factor models assume X(j) can be modeled as the maximum

of the factors times a parameter amj, the so called factor loadings. Both models have the

same tail dependence structure (Einmahl et al. (2012)). Let Z := (Z(1), ..., Z(r))′ be a random

vector of independent Fréchet random variables (ν =1). A d-dimensional max factor model for

4Theoretically, the dependence structure is only governed by the parametrization of the copula and not by distributional properties
of the univariate tails, i.e. νm. In additional simulations that are not reported here, we found finite sample properties of the test
are robust against changing the marginal degrees of freedom.
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X = (X(1), ..., X(d))′ is then defined by

X(j) := max(a1jZ
(1)
i , ..., arjZ

(r)
i ), j = 1, ..., d,

with
∑d

j=1 amj = 1, amj ≥ 0. The loading matrix BA
d := (amj) governs the dependence between

the tails of X. Employed calibrations of BA
d can be found in the Appendix. In the notation of the

loading matrix the subscript denotes the dimension d of X and the superscript denotes whether

the model fulfills the null (B0) or the specific kind of alternative (BA). The null is fulfilled if

at most two entries within a row of the loading matrix are non-zero as then tail dependence is

only caused by pairs. For example, given the parametrization

B0
3 =

(
0.5 0.5 0
0.5 0 0.5
0 0.5 0.5

)
,

we have that the STDFs for bivariate pairs are `12(1, 1) = `13(1, 1) = `23(1, 1) = 1.5, while

R123(1, 1, 1) = 0. Einmahl et al. (2012) show that `(x) =
∑r

i=1 maxj=1,...,d(aij/(
∑r

i=1 aij))x
(j),

and thus `123(1, 1, 1) = 1.5 and ∆ = 0. If more than two elements within a row are non-zero,

there exist common factors that induce three or more components of X to become simultaneously

extreme. Thus, tail dependence is also caused by higher–dimensional joint extremes, and the

null would be false. This is the case for BA1
3 , BA2

5 , BA2
5 , BA1

7 , BA2
7 , BA3

7 . Specifically, the number of

non-zero entries per row describes the dimension in which joint extremes occur. Model notation

is chosen such that with increasing index of A the order of tail events increases, i.e. BA1
5 allows

for joint extremes of X(1), X(2) and X(3) (first row) while in case of BA2
5 also four-dimensional

joint extremes of X(1), X(2), X(3) and X(4) can occur (first row).

In extreme value statistics, simulation results are usually sensitive to the choice of the

threshold parameter k. Large values of k cause a systematic bias of ∆̂, whereas a small k

induces a large variance. We use a data-driven approach to the threshold choice in our simulation

study. Within a reasonable interval, k is chosen randomly within each simulation replication.

This interval is defined as [0.01n, cn1/2], c ∈ [1, 2]. By several simulation runs, we found the

best choices for c concerning test size are 1.75 in d = 3, 1.45 in d = 5, and 1.1 in d = 7.5

For comparability of results across increasing dimensions d, we let c decrease with d. With

increasing dimensions, the range of `X and the number of possible univariate extremes increase.

To achieve comparability across dimensions, higher cut-off values X(i)
[n:n+0.5−k] are chosen for

higher dimensions. Generally, in our simulation experiments, we find that the power of the test

is fairly robust against changes in c.

5In dimensions d = 4, and d = 6 we found c = 1.5, and c = 1.2, respectively, to perform best.
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For the simulation in each specification, we employ five sample sizes which are standard

for analyzing daily financial data (n1 = 200, n2 = 500, n3 = 1000, n4 = 1500, n5 = 2000). Table

(1) contains the empirical rejection rates of the test in each of the model classes at a nominal

significance level of 5%. For max factor models, we find that the empirical power of the test is

generally high in all considered dimensions. For models with only a slight impact of HOTDs,

however, the test requires sample sizes larger than 1000 in d = 5 in order to yield satisfactory

power, which appears adequate given the difficulty of the problem in small samples. But

empirical power quickly converges to one for larger sample sizes. And empirical sizes appear close

to the nominal level and plateaus around 5% for n sufficiently large. Depending on the exact

model specification, this can occur already for the smallest sample size of 200. While empirical

power is robust against the choice of k, we found that empirical sizes vary substantially when

altering the domain of k. Generally, the test rejects too often if k tends to be small, thus

empirical sizes are systematically smaller than nominal levels. In financial risk management,

however, one would prefer a test with a larger false positive rate over a test that tends to falsely

overlook prevalent HOTDs. Still, as we model k as a uniform random variable defined over an

interval of reasonable possible values, reported sizes are more robust with respect to k than if

k was a fixed value.

For the meta t-distribution, increasing dimensions and decreasing degrees of freedom of the

copula imply high empirical rejection rates. This is to be expected given the above discussion

of the properties of the meta t–distribution.

For all specifications, empirical power monotonously converges to one as n increases. For

perfectly tail dependent DGPs (BA1
3 ), and meta t–distributions with small νC , empirical power

is always very high, irrespective of the dimension. Conditional on the choice of k, empirical

sizes are also close to α for the DGPs characterized by B0
3 , B

0
5 , and B0

7 , again irrespective of the

dimension. Hence, up to dimension 7, the usual curse of dimensionality often encountered when

employing non-parametric methods appears not to play a role for our test. For small sample

sizes, empirical size is slightly larger than the nominal size α. Furthermore, if ∆ is close to zero

(e.g. for a meta t–distribution with νC = 20), larger sample sizes such as n3 = 1000 are required

for the test to accurately identify the presence of HOTDs.

3.2 Local power analysis

In this subsection, we study the performance of the test under a series of local deviations from

the null hypothesis. In contrast to the fixed alternatives of the subsection before, alternatives

here are very close to the null and their distance to the null can shrink with increasing sample

size, revealing the power optimality properties of the test. Thus, we evaluate the ability of the

test to detect a violation of the null if the nature of the underlying distribution of X is such
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Table 1: Empirical rejection rates: Max factor models and iid t–copula (df = νC , ρ = 0.5) with
t– distributed marginals (df = 5).

d = 3 d = 5 d = 7
200 500 1000 1500 2000 200 500 1000 1500 2000 200 500 1000 1500 2000

t-distr.
νC

5 35.2 51.2 66.2 74.2 78.6 60.2 79.4 91.6 96.2 99.6 70.4 82.2 97.0 100 100
10 29.8 39.0 45.4 55.4 63.2 54.8 68.0 78.2 88.2 93.4 59.2 77.0 91.0 97.6 99.8
15 25.6 32.8 42.0 45.8 57.8 54.2 57.2 73.6 83.0 91.8 58.4 72.2 85.0 94.0 98.8
20 24.0 30.0 41.6 40.0 51.6 60.4 62.2 73.2 81.2 87.0 56.6 69.0 86.0 92.0 96.6

max factor

B0
3 5.2 4.2 4.2 5.0 4.8 – – – – – – – – – –

BA1
3 100 100 100 100 100 – – – – – – – – – –

B0
5 – – – – – 7.2 6.8 7.6 5.6 5.2 – – – – –

BA1
5 – – – – – 20.4 34.4 48.2 60.0 70.2 – – – – –

BA2
5 – – – – – 59.2 76.8 94.4 97.4 99.4 – – – – –

BA3
5 – – – – – 100 100 100 100 100 – – – – –

B0
7 – – – – – – – – – – 4.0 4.4 2.4 5.2 5.8

BA1
7 – – – – – – – – – – 49.2 73.8 95.4 100 100

BA2
7 – – – – – – – – – – 59.6 80.6 98.6 100 100

BA3
7 – – – – – – – – – – 68.8 89.4 99.0 99.8 100

that fewer and fewer joint extremes in dimension ≥ 3 occur in finite samples. Following Berg

& Quessy (2009) and Kojadinovic & Yan (2010), such distributions are generated by mixing

distributions that violate the null, denoted by FX,H1, with distributions that comply with the

null, denoted by FX,H0. We define the mixture distribution by

FX,λ(n)(x) := (1− λ(n))FX,H0(x) + λ(n)FX,H1(x), (13)

where λ(n) decreases to zero for increasing sample size n and FX,H0(x) satisfying ∆ = 0,

FX,H1(x) satisfying ∆ > 0, and FX,H0(x) ≤ FX,H1(x),∀x, ensuring realizations from FX,H1 enter

the extreme part of the sample. Denote the test statistic resulting from the mixture distribution

FX,λ(n)(x) by ∆λ(n). For λ(n) = O((
√
k(n))−1), we can show that, asymptotically,

√
k(∆̂λ(n) −∆λ(n))

d→ N(0, σ2
∆̂λ(n)

),

where the asymptotic variance can again be obtained analytically from theorem 4.3 in Einmahl

et al. (2012). Thus, the test has power against any local alternatives if and only if these

alternatives are at least of order (
√
k(n))−1 apart from the null.

In the following simulations, we illustrate this result. Hence, we are interested in rejection

rates of ∆ = 0 from mixture distributions defined in equation (13) for λ(n) := λk(n)−1/2, with
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Figure 1: Empirical test power for the mixture distributions defined in equation (14) with sample
size n = 2000 at level 5%.
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0 < λ ≤ k(n)−1/2. We determine k as in the simulations before. In order to calculate local powers

pn, we generate S = 1000 samples from a DGP of mixture distribution type, with fixed sample

size and increasing λ. Local power is estimated by p̂n = 1/S
∑S

i=1 1{∆̂λ(n) > zασ̂∆̂,λ(n)k
−1/2} for

every λ(n). The asymptotic variance σ̂2
∆̂,λ(n)

is estimated by the bootstrap procedure presented

in Section (2.3). Berg & Quessy (2009), Kojadinovic & Yan (2010) carry out similar analyses

for goodness–of–fit tests of parametric (extreme value) copulas. For the sake of brevity, we

concentrate on dimensions d ∈ {3, 5}, sample size n = 2000, and we let λ increase. For d = 3,

FX,λ(n)(x) = (1− λ(n))FY(y) + λ(n)FW(w), (14)

where FY(y) and FW(w) are the distribution functions of the max factor model B0
3 and BA1

3 ,

respectively. To ensure that realizations of BA1
3 actually enter the extremal part of the sample,

factors Z are first used to generate data from FY(y) and then multiplied by a constant larger

than one when generating data from FW(w). For d = 5, we mix the distribution function of B0
5

and BA3
5 := ( 1/5 1/5 1/5 1/5 1/5 ). If, for example, λ = 2, we have λ(n) ≈ 0.045. Thus 4.5% of the

extreme part of the sample is generated by the FW which violates the null. This share increases

in λ. Figure 1 shows estimated local powers with α = 0.05. The test successfully detects minor

violations from the null. Even for small λ, when the impact of the perturbating DGP is small,

rejection rates quickly converge to one. Increasing the dimension d accelerates the convergence

speed of empirical power.
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3.3 Size and power for serially dependent and conditionally heteroskedastic components

While Proposition 2.2 assumes iid data, financial time series, in particular asset returns, feature

small autocorrelations and time–varying conditional volatility, and thus cannot be considered

iid. In order to apply our test to detect the cross-sectional tail dependence structure of financial

time series, the data have to be pre-filtered. We use autoregressive moving average (ARMA)

models for the mean, and the class of generalized autoregressive conditional heteroskedasticity

(GARCH) models for the variance, (Bollerslev (1986)). After filtering, we expect that the

resulting standardized residuals are largely free of serial dependence in first and second moments,

and are thus nearly iid. We therefore apply the test to these pre-filter residuals instead of the

raw observations. In the applied extreme value literature, this approach is common when dealing

with time-series effects, see e.g. McNeil & Frey (2000) in a univariate setting for extreme quantile

estimation, and Poon et al. (2004) for estimating bivariate tail dependencies between financial

time series.

While it is intuitively clear that
√
n-consistent parametric pre-filtering should not impact

the consistency of the slower converging non–parametric estimator of the STDF, there are

no formal theoretical results on the asymptotic properties of such dependence estimates for

pre-estimated residuals available yet. In comparison to semi-parametric and non-parametric

distribution copula estimation (see e.g. Chen & Fan (2006), Rémillard (2010), Oh & Patton

(2013)) such results for non-parametric tail dependence estimation would require completely

different empirical process techniques for respective rank statistics which do not exist and

are extremely challenging to develop. In what follows, we therefore focus on the finite sample

performance of the test in such settings. In particular, we explore if and how empirical size and

power of the DGPs from Section 3 change when introducing autocorrelation and time–varying

conditional volatility.

We follow Oh & Patton (2013) and generate random draws from the following AR(1)–

GARCH(1,1) processes, which are linked by the error term copula Cη:

y
(i)
t = µ

(i)
t + σ

(i)
t η

(i)
t = ϕ

(i)
0 + ϕ

(i)
1 y

(i)
t−1 + σ

(i)
t η

(i)
t ,

σ
2,(i)
t = ω(i) + α(i)

(
y

(i)
t−1 − µ

(i)
t−1

)2

+ β(i)σ
2,(i)
t−1

η := (η(1), ..., η(d)) ∼ iid Fη(x
(1), ..., x(d)) = Cη(Fη,(1)(η

(1)), ..., Fη,(d)(η
(d))), (15)

t = 1, ..., T . θ(i) = (ϕ
(i)
0 = 0.01, ϕ

(i)
1 = 0.05, ω(i) = 0.05, α(i) = 0.1, β(i) = 0.85)′ denotes the vector

of AR–GARCH parameters for marginal i, Fη is the continuous joint distribution function of

the vector of error terms η = (η(1), ..., η(d)), and Fη,(i)(η(i)) are the marginal distributions of the

error terms linked by error term copula Cη. Hence the dependence structure of η is the “true” but
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unobserved dependence we are interested in, and from which the observed dependence structure

between the realizations y(i)
t might differ due to autocorrelation and GARCH effects. See Oh &

Patton (2013) for details on such DGPs.

We test for HOTDs in the observed, unfiltered realizations (y
(1)
t , ..., y

(d)
t )Tt=1, and in correctly

standardized residuals (η̂
∗,(1)
t , ..., η̂

∗,(d)
t )Tt=1, η̂

∗,(i)
t := (y

(i)
t − µ̂

(i)
t )/σ̂

(i)
t . To evaluate the size of the

test, we choose the max factor model of type B0
3 , B

0
5 , and B0

7 as models for the error term copula

Cη. Thus, the test is again applied in dimensions 3, 5, and 7. In contrast to the iid setting, we do

not employ a Fréchet(1) distribution, which would produce very extreme observations such that

numerical GARCH–estimation may fail to converge. As marginal error distributions Fη,(i)(η(i))

we choose t–distributions with degrees of freedom νm ∈ {5, 10, 15, 20} for size analysis. For

power analysis, Cη is the t–copula with degree of freedom νC ∈ {5, 10, 15, 20}, and fixed marginal

degrees of freedom νm = 5, i.e. η follows a meta t–distribution.6 Thereby we can observe how

quickly the test reacts to a steadily diminishing degree of HOTDs.

Simulations are repeated S = 500 times with sample sizes n2 = 500, n3 = 1000, n4 =

1500, n5 = 2000. We do not include n1 = 200 in this section as GARCH estimates for a sample

size of 200 may be unreliable. The parameter vector θ = (θ(1), ..., θ(d))′ is estimated by maximum

likelihood, assuming marginal t–distributions with estimated degrees of freedom. Table (2)

reports empirical rejection probabilities for the factor copula with ∆ = 0; Table (3) reports

empirical rejection probabilities in case of the t-copula as error term copula for filtered and

unfiltered data, respectively. We find that disregarding serial correlation and time–varying

volatility worsens size and power properties, and a correct filter leads to similar results as

in the iid case. Empirical rejection rates for the max factor copula indicate that the test is

slightly undersized. Yet empirical sizes are still satisfactorily close to 5%.

The effect of serial correlation and GARCH effects becomes clear when comparing the

number of test rejections of the binomial test H0 : pi = 0.05, where pi denotes a rejection

probability (test level 5%). That is, for each setting we compare all 48 empirical rejection

rates of filtered and unfiltered data with the nominal size of 5%. The correctly specified AR(1)-

GARCH(1,1) filter leads to 18.2% of all cases in which the empirical rejection probability

significantly differs from the nominal size. Not filtering the data amounts to 31.3% significant

deviations. With a binomial test one can also compare empirical powers of the iid and the

non-iid settings. In 95.8% of comparisons, applying the test to the residuals of the correctly

specified GARCH process produces significantly higher power than testing in the unfiltered

returns. Hence, disregarding the time series properties of the data worsens size and power

6As in the iid case, empirical power is robust against varying the marginal degrees of freedom. Yet, we report empirical sizes for
different νm in order to have more data points for a more accurate comparison between test performances for unfiltered and filtered
time series.
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Table 2: Empirical rejection rates underH0: Max factor copula as error term copula, t(df = νm)–
distributed errors, and GARCH(1,1) volatility model.

d = 3 d = 5 d = 7
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

filtered
νm

5 4.6 3.0 3.8 5.2 4.4 6.0 6.4 6.2 2.8 2.4 4.2 3.4
10 3.4 2.0 2.8 3.8 6.0 4.0 5.6 5.2 2.8 3.6 3.2 2.4
15 5.2 5.0 5.4 4.4 4.4 3.6 4.8 4.2 3.0 2.0 3.4 5.0
20 3.8 2.6 5.4 4.4 5.6 5.2 5.4 4.4 3.6 1.8 3.6 4.8

unfiltered
νm

5 3.4 2.6 4.4 4.6 4.2 5.4 4.6 2.8 1.4 3.4 1.8 1.6
10 4.6 2.2 4.2 4.2 4.8 4.4 5.2 4.6 1.6 3.8 2.8 2.0
15 4.6 4.6 4.6 5.8 5.4 4.2 4.8 5.8 3.4 2.0 2.8 1.8
20 5.2 2.6 5.6 4.4 6.4 6.0 4.2 7.0 3.0 2.0 2.2 2.8

Table 3: Empirical rejection rates under H1: Correctly filtered and unfiltered GARCH processes
with t–copula (df = νC , ρ = 0.5) as error copula, t(νm = 5)–distributed errors.

d = 3 d = 5 d = 7
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

filtered
νC

5 45.0 63.2 71.8 79.4 77.8 90.8 96.8 99.2 83.6 97.2 99.4 99.8
10 49.4 62.2 74.2 83.0 67.0 81.8 86.4 92.4 72.4 91.2 97.4 99.8
15 32.2 42.0 45.4 52.8 60.4 74.6 83.0 90.6 70.8 86.0 93.8 100
20 26.0 39.6 42.2 49.6 56.4 70.6 79.4 86.8 66.6 82.2 93.0 97.0

unfiltered
νC

5 24.6 27.2 30.2 31.6 51.2 53.8 60.0 61.6 61.8 68.2 76.0 79.4
10 17.0 19.2 21.0 23.4 41.6 42.0 42.4 43.4 54.0 55.8 61.4 60.4
15 17.4 15.0 14.2 15.4 37.8 39.0 38.4 38.8 45.6 50.8 55.2 56.6
20 16.4 12.4 18.0 13.2 36.8 35.2 35.2 38.0 43.0 48.2 51.2 53.2

results.

Finally, we compare the power results obtained when simulating from the iid meta t–

distribution (Table (1)) with those corresponding to correctly filtered, and unfiltered AR(1)-

GARCH(1,1) processes connected via the meta t–distribution (Table (3)). In case of the correct

filter, empirical power never differs significantly from the iid case (test level 5%). In the unfiltered

series, however, empirical power is significantly lower in 91.6% of all cases (test level 5%). Hence,

disregarding time–varying volatility amounts to lower power and lower test size, and testing in

correctly filtered series produces nearly identical results as for iid data.
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4 Higher order tail dependencies in global and European stock markets

4.1 Data description

In our empirical application, we study extreme gains and losses of two different sets of stock

indices. First, we test for HOTDs in left and right tails of the weekly stock return distributions

on a global level, while in a second study we focus exclusively on daily European stock returns.

The "global portfolio" consists of three stock indices of the USA, Europe and the Asian Pacific

region, namely the MSCI USA, MSCI Pacific, and MSCI Europe.7 The "European portfolio"

consists of seven individual European MSCI indices, including the largest European economies

(United Kingdom, Germany, France, Italy, Spain), as well as smaller economies that played a

role during the recent European sovereign debt crisis (Greece, Portugal).8 The two portfolios

are analyzed separately.

The sample period of the global portfolio ranges from 01/30/1970 to 10/29/2014. To

overcome problems arising from different time zones, we use weekly returns. As observations

of MSCI Pacific are only available on a monthly frequency until 12/30/1983, a weekly proxy

for MSCI Pacific during that time period is created by averaging over weekly observations of

the MSCI Japan and MSCI Australia, with weights equal to 2/3 and 1/3, respectively. This

weighting scheme resembles the current composition of the MSCI Pacific.9 After deleting weeks

with zero returns, the sample features 2335 observations for each index. The sample period of

the European portfolio ranges from 01/04/1988 to 10/29/2014. In this second portfolio time

zone effects do not matter, so we can use daily returns. After discarding days with zero returns,

the sample has 6889 observations for each index.

Both samples are tested against HOTDs with rolling windows containing n = 750 observa-

tions, corresponding to roughly 15 years in the global portfolio, and roughly three and a half

years in the European portfolio. Simulation studies document appropriate test performance for

such a sample size, and we aim to keep the window length as short as reasonably possible.

The test is applied bi–weekly for the global portfolio and every fifth day for the European

portfolio. We test against HOTDs in raw observations, and in standardized ARMA–GARCH

residuals, along the lines of model (15) in order to eliminate the effects of serial correlation and

time–varying volatility. Returns are thus modeled by

y
(i)
t = µ

(i)
t + σ

(i)
t η

(i)
t , i = 1, ..., 7, η

(i)
t

iid∼ t(νm).

7Data are available on Datastream with mnemonics MSUSAML, MSPACF$ and MSEROP$.
8Data are available on Datastream with mnemonics MSUTDKL, MSGERML, MSFRNCL, MSITALL, MSGREEL, MSSPANL and
MSPORDL.
9Data are available on Datastream with mnemonics MSJPANL and MSAUSTL.
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Standardized residuals η̂∗,(i)t = (y
(i)
t − µ̂

(i)
t )/σ̂

(i)
t are re–estimated in each window to address

potential parameter changes. In every window, each time series is fitted to an ARMA(p ≤
2, q ≤ 2) model with automatic order choice according to the Schwarz information criterion.

Subsequently, the data are fitted to a threshold- (T)GARCH(1,1) (see Glosten et al. (1993))

model.10 A TGARCH(1,1) model is given by

σ2
t = ω + ασ2

t−1η
2
t−1 + δ1{ηt−1 < 0}σ2

t−1η
2
t−1 + βσ2

t−1, t = 1, ..., T.

Notably, a TGARCH model is able to capture asymmetric impacts of positive and negative

shocks. Hence, in each window and for both return losses and return gains, we test against

HOTDs in raw returns and in standardized ARMA(p,q)–TGARCH(1,1) residuals.

In order to calculate ∆̂, we have to choose the number of upper order statistics k. The rolling

window scheme complicates a manual choice for each window. Thus, for each k ∈ [0.01n, c
√
n]

we compute ∆̂(k) and take the median thereof as the final estimator for ∆ (see Sections 2.3 and

3 for details). Figures 2 and 3 show the evolution of ∆̂, 90% confidence intervals for ∆ and test

decisions for the global and the European portfolio at each time point; a confidence interval is

colored gray whenever H0 : ∆ = 0 has to be rejected, i.e. whenever multivariate tail risk is not

only bivariate. 11

4.2 Results and economic implications

Regarding global portfolio gains, the TGARCH(1,1) filtered series never allows rejecting the

null hypothesis of no HOTDs, while for the unfiltered series the null has to be rejected after

2010 with P–values close to 5%. Still, the absolute amount of HOTDs is also small after 2010.

For losses, we detect an accentuated increase in HOTDs after 2006/2007, whereas no significant

HOTDs up to 2006 can be found. The gradually increasing HOTDs appear to be still on the rise

at the end of the sample. Although the sample covers major historical events such as the 1970s

oil crises, the Black Monday 1987, the dissolution of the Soviet Union, the Gulf War 1990–91,

the Asian financial crisis in 1997, the introduction of the Euro, the burst of the dot–com bubble,

and 09/11/01, it is the global financial crisis of 2007–08 that marks the start of global HOTDs

becoming significant. Thus the latter is the only event within the sample, that is capable of

herding global high–dimensional extreme losses. Before 2007–08, investors holding a globally

diversified portfolio did not have to pay attention to HOTDs while this has apparently become

10Results obtained by using a standard GARCH model were qualitatively very similar and are therefore not reported.
11Note, as ∆ ≥ 0, theoretically, confidence interval lower bounds should not become negative yet this bound decides whether ∆
is significantly larger than zero. Furthermore, as we are conducting one-sided tests, the shaded areas within the 90% confidence
intervals refer to test rejections on 5% significance level.
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an additional challenge in asset allocation on top of bivariate tail dependence nowadays. On

the other hand, throughout the considered time span, investors cannot expect to benefit from

HOTDs between gains: The financial turmoils during 2007–08 caused univariate extreme losses

to trigger joint global extreme losses, whereas univariate extreme gains still do not spread out

(unfiltered), or at least not as strongly as extreme losses (filtered).

Losses and gains within the European portfolio, on the other hand, are more prone

to HOTDs. This may be explained by closer economic connections, but also by the fact

that now seven indices are considered, implying that extreme connections between three or

more components are more likely than within a three–dimensional portfolio.12 Intra–European

HOTDs appear to be time–varying and are most of the time significant. The TGARCH filter

smoothes the evolution of ∆̂, suggesting that the unstable behavior of ∆̂ for the unfiltered series

can be partly explained by serial correlation and time–varying conditional volatility. However,

the results do not differ qualitatively with respect to whether the filter is employed or not, as

the test decisions on a significance level of 5% are mostly alike for both specifications. Overall,

the empirical variance of ∆̂ appears to be constant for both the filtered and the raw data. For

losses, one observes a decrease of HOTDs from the sample beginning until the mid to mid/end–

1990s; also, HOTDs are not significant between 1994 and 1998. Afterwards, the importance of

HOTDs increases until the beginning of the 2007–08 crisis, remaining on a stable, high level

ever since. Interestingly, this movement is continuous and the major political events that fall in

this period (dot–com crisis, 9/11/01, introduction of the Euro) do not cause discontinuities of

the trajectory of ∆̂.

We conclude that HOTDs in the European portfolio are not driven by one–time events

but rather mirror established, mid- to long-term processes due to the European financial and

economic integration. This also gives an explanation for why gains HOTDs of the European

portfolio prevail throughout the sample, which stands in contrast to nearly non–existent HOTDs

in gains within the global portfolio. Diversification opportunities of cross–sectional extreme

losses are limited within Europe, as it was also found in Christoffersen et al. (2012). Our

test results for right tails indicate, however, that there is potential to benefit from cross–

sectional extreme gains. This generalizes the results in Poon et al. (2004) as the presence of

HOTDs implies their results based on pairwise bivariate analysis. Moreover, we observe that

tail dependence, at least within European stock markets, is more severe than assumed so far.

12The latter makes a comparison of test results across both data sets difficult.
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Figure 2: Dynamics of the test statistic ∆̂ (see equation (10)), together with 90% confidence
intervals, the global portfolio, using a rolling window of roughly 15 years. The left panel shows
test decisions for portfolio losses, whereas the right panel shows test decisions for portfolio gains.
Confidence intervals are colored gray whenever H0 : ∆ = 0 has to be rejected.
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4.3 Factor model for the European stock market

The presence of HOTDs within the European portfolio might be caused by tail events of a

common external factor. To distill truly intra–European HOTDs, we now control for effects of

global financial markets. Returns y(i)
t are thus modeled by a factor market model

y
(i)
t = ζ(i)Mt + ε

(i)
t , i = 1, ..., 7,
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Figure 3: Dynamics of the test statistic ∆̂ (see equation (10)), together with 90% confidence
intervals, for the European portfolio, using a rolling window of 3 to 4 years. The left panel shows
test decisions for portfolio losses, whereas the right panel shows test decisions for portfolio gains.
Confidence intervals are colored gray whenever H0 : ∆ = 0 has to be rejected.
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where Mt denotes a common factor for all marginal returns y(i)
t . The disturbance ε(i)t is often

interpreted as the idiosyncratic part of y(i)
t . An apparent choice forMt is the return series of the

MSCI World Ex Europe13 as it is an index of all relevant stock markets except for European

ones.

We repeat the rolling window analysis of the previous section for the European portfolio and

test for HOTDs between (unfiltered) factor model residuals (ε̂
(1)
t , ..., ε̂

(7)
t )nt=1. Furthermore, we

13This index runs under mnemonic MSWXEU$âĂŃ in Datastream.
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obtain standardized residuals from a ARMA(p,q)–TGARCH(1,1) model for the factor model

residuals. Test decisions for the latter two models thus account for serial correlation, time–

varying volatility and the effect of the common risk driver. The remaining dependence structure

can be considered as idiosyncratic to the European stock market system. For all seven indices,

the return model is re–estimated in each window14 and the orders of the ARMA models are

again found with the Schwarz criterion. Test results for both gains and losses of unfiltered data

and ARMA-TGARCH(1,1) filtered data are shown in Figure 4.

Controlling for changes in global stock markets slightly attenuates European HOTDs, yet

results closely resemble the results from the previous subsection (Figure 3). The only major

exception where controlling for the world index alters the test decision, in the sense that it

causes HOTDs to be significant, is for gains during 1990–94, Figure 3 (d) and Figure 4 (d).

However, the effect of the market factor to HOTDs between European gains has increased

since 2006 which can be seen by comparing Figures 3 (b) and 4 (b). Both do not account for

ARMA–(T)GARCH effects and the only possible source for a difference is the accounting for the

common factor. Overall, HOTDs between the idiosyncratic risks of European stock markets have

increased since 2000. Thus, we can reveal that joint extremes are truly due to intra–European

HOTDs. For a practitioner, this provides econometric evidence that losses on portfolios with

different European based Exchange-traded funds, or with different single European stocks, are

likely to add up in times of crisis, and diversification effects may fade away in case of tail events

for solely stock-based portfolios. As multivariate extreme losses of European stock markets are

apparently only slightly affected by events of the market factor, there exist tail diversification

opportunities between both. These opportunities slightly diminish for extreme gains. Besides

the importance for asset allocation, significance of HOTDs also seems to mark periods of distress

in the markets, i.e. when stock indices tend to jointly experience large losses.

4.4 Importance and share of higher order tail dependencies in practice

To show the importance of testing for HOTDs, we provide some simple descriptive screening
tools in this subsection. In particular, we assess the share of bivariate tail events that cannot
be captured by tail correlations. For this, we use the asymptotic probabilities of two or three

14Whenever numerical optimization of the likelihood function failed for the given setting, we first changed the conditional distribution
from a t to a normal distribution. In seven out of 8596 estimated models we then only came across convergence problems for 8
TGARCH models. In these cases we used residuals from the GARCH(1,1) model as substitute. There appears to be one outlier of
∆̂ for TGARCH residuals at 4/7/96 where the optimization of the likelihood for the TGARCH model struggles.
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Figure 4: Dynamics of the test statistic ∆̂ (see equation (10)), together with 90% confidence
intervals, for the European portfolio, using a rolling window of 3 to 4 years, after controlling
for a market factor. The left panel shows test decisions for portfolio losses, whereas the right
panel shows test decisions for portfolio gains. Confidence intervals are colored gray whenever
H0 : ∆ = 0 has to be rejected.

(a) Losses, unfiltered

1990 1994 1998 2002 2006 2009 2013

D=
0

0.
5 

m
ax

 D
m

ax
 D

¯

reject H0 : D=0
not reject

D̂ & 90% CI

(b) Gains, unfiltered

1990 1994 1998 2002 2006 2009 2013

D=
0

0.
5 

m
ax

 D
m

ax
 D

¯

reject H0 : D=0
not reject

D̂ & 90% CI

(c) Losses, ARMA(p,q)–TGARCH(1,1) filter
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joint extremes, κ2 and κ3, defined as

κ2 = lim
t→0

t−1P
( ⋃

i 6=j

{
{X(i) ≥ F−1i (1− tx(i))} ∩ {X(j) ≥ F−1j (1− tx(j))}

})
,

κ3 = lim
t→0

t−1P
( ⋃

h 6=i6=j

{
{X(h) ≥ F−1h (1− tx(h))} ∩ {X(i) ≥ F−1i (1− tx(i))} ∩ {X(j) ≥ F−1j (1− tx(j))}

})
.

They describe the likelihood of at least two or respectively three assets becoming extreme at

once. Their ratio κ3/κ2 quantifies the share of bivariate extremes that also amount to a trivariate
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extreme event. Similar to the estimation of the STDF, this magnitude can be estimated by its

empirical counterpart. We compare the days featuring a bivariate (κ2) or trivariate (κ3) extreme

with the number of days with at least one univariate extreme,

κ̂2 =

∑n
t=1

∑
i 6=j
∏

g∈{i,j} 1
{
X

(g)
t > X

(g)
n:n+0.5−k}∑n

t=1 1{
⋃d
i=1X

(i)
t > X

(i)
n:n+0.5−k}

, (16)

κ̂3 =

∑n
t=1

∑
h6=i 6=j

∏
g∈{h,i,j} 1

{
X

(g)
t > X

(g)
n:n+0.5−k}∑n

t=1 1{
⋃d
i=1 X

(i)
t > X

(i)
n:n+0.5−k}

. (17)

Section 6.3 in the Appendix provides a small simulation study that shows κ3/κ2 is indeed a

reasonable measure for determining the severeness of HOTDs.

Figure 5 shows estimates κ̂2, κ̂3 and κ̂3/κ̂2 for the TGARCH filtered European portfolio

without controlling for a common factor. As before, final estimates in each window were found

by taking the estimates’ medians for k ∈ [0.01n, c
√
n].

Not surprisingly, trajectories resemble the dynamics of ∆̂ (Figures 3 c-d). The probability of

observing trivariate extremes (κ̂3) has steadily increased from 10–20% for losses, and 5–10% for

gains, respectively, during the 1990s up to 20–30% for losses, and 30-40% for gains, respectively,

at the peak of the recent financial crisis 2007–2009. However, the share of trivariate extremes

in bivariate extremes κ̂3/κ̂2 steadily declined both for losses and gains during the 1990s (from

60% to 35% for losses, and from 50% to 20% for gains) and has consequently ascended for both

tails until the end of the 2010s (up to 70-80% for both losses and gains). Thus, for losses, the

probability that multivariate extremes occur in larger cross-sections has doubled during the

2000s, while it has even tripled for gains in that time span. This highlights that extremes more

than ever occur not only in bivariate pairs, but also in larger cross-sections.

5 Summary

This paper proposes a test that reveals situations in which common bivariate measures

for tail dependence underdiagnose the potential for higher-dimensional extreme events. Test

asymptotics are derived and simulations show the bootstrap implementation routine features

attractive finite sample properties, despite the challenging threshold choice, inherent to extreme

value statistics, which occasionally affects test size. In the case of data that exhibit serial

correlation and GARCH effects, we recommend studying estimated residuals instead observed

realizations, to maintain the good size and power properties.

On global stock markets, we find that cross–sectional extremes become relevant in the

course of the financial crisis of 2007–08. Multivariate extremes on European stock markets

are historically more intertwined, as the impact of high–dimensional extremes is significant
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Figure 5: Dynamics of κ̂2, κ̂3, and κ̂3/κ̂2 (see equations (16) and (17)) for the TGARCH filtered
European portfolio.
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throughout the considered sample. There appears to be diversification potential of multivariate

extreme losses between European and non–European stock markets, while extreme gains do

not share this feature. Within the European system, left tail events feature no potential for

diversification. We find time periods when up to 80% of extremes are truly multivariate.
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6 Appendix

6.1 Model specifications

Table 4: Specifications of the max factor models.

B0
3 =

(
1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

)
BA1

3 = ( 1/3 1/3 1/3 )

B0
5 =



1/2 1/2 0 0 0
1/2 0 1/2 0 0
1/2 0 0 1/2 0
1/2 0 0 0 1/2
0 1/2 1/2 0 0
0 1/2 0 1/2 0
0 1/2 0 0 1/2
0 0 1/2 0 1/2
0 0 1/2 0 1/2
0 0 0 1/2 1/2


BA1

5 =


1/3 1/3 1/3 0 0
1/2 0 0 1/2 0
1/2 0 0 0 1/2
0 1/2 0 1/2 0
0 1/2 0 0 1/2
0 0 1/2 1/2 0
0 0 1/2 0 1/2

 BA2
5 =

 1/4 1/4 1/4 1/4 0
1/2 0 0 0 1/2
0 1/2 0 0 1/2
0 0 1/2 0 1/2
0 0 0 1/2 1/2



B0
7 =



1/2 1/2 0 0 0 0 0
1/2 0 1/2 0 0 0 0
1/2 0 0 1/2 0 0 0
1/2 0 0 0 1/2 0 0
1/2 0 0 0 0 1/2 0
1/2 0 0 0 0 0 1/2
0 1/2 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0
0 1/2 0 0 1/2 0 0
0 1/2 0 0 0 1/2 0
0 1/2 0 0 0 0 1/2
0 0 1/2 1/2 0 0 0
0 0 1/2 0 1/2 0 0
0 0 1/2 0 0 1/2 0
0 0 1/2 0 0 0 1/2
0 0 0 1/2 1/2 0 0
0 0 0 1/2 0 1/2 0
0 0 0 1/2 0 0 1/2
0 0 0 0 1/2 1/2 0
0 0 0 0 1/2 0 1/2
0 0 0 0 0 1/2 1/2



BA1
7 =

(
1/3 1/3 1/3 0 0 0 0
1/3 0 0 1/3 1/3 0 0
0 1/3 0 0 0 1/3 1/3

)
BA2

7 =

(
1/3 1/3 1/3 0 0 0 0
0 0 1/2 1/2 0 0 0
0 0 0 1/4 1/4 1/4 1/4

)

BA3
7 =

(
1/6 1/6 1/6 1/6 1/6 1/6 0
1/2 0 0 0 0 0 1/2
0 1/2 0 0 0 0 1/2
0 0 1/2 0 0 0 1/2

)

6.2 Proofs

Proof of proposition 2.1

If X is tail independent, `(x) = x1⇔ `i(x
(i)) = x(i)1, for all possible bivariate combinations

i. Plugging this into the general form of ∆, and realizing that in this case
∑

i<j≤2 `i(x
(i)) =
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(d− 1)
∑d

i=1 x
(i), it follows that

∆ = `(x)− 2
d∑
i=1

x(i) + d

d∑
i=1

x(i) −
∑
i<j≤2

`i(x
(i))

=
d∑
i=1

x(i) − 2
d∑
i=1

x(i) + d

d∑
i=1

x(i) −
∑
i<j≤2

`i(x
(i))

=
d∑
i=1

x(i) − 2
d∑
i=1

x(i) + d

d∑
i=1

x(i) − (d− 1)
d∑
i=1

x(i)

= 0.

The reverse does not hold true. E.g. let X := (X(1), X(2), X(3)), with X(3) being indepen-

dent of X(1), and let X(1) a.s.= X(2), i.e. X(1) and X(2) are perfectly tail dependent. Thus,

`12(x(1), x(2)) ≡ `11(x(1), x(1)) = x(1), `13(x(1), x(3)) = x(1) + x(3), and

`123(x(1), x(1), x(3)) = lim
t↓0

tP
( ⋃
i∈{1,2,3}

{X(i) ≥ F−1
i (1− tx(i))}

)
= lim

t↓0
tP
(
{X(1) ≥ F−1

1 (1− tx(1))} ∪ {X(3) ≥ F−1
3 (1− tx(3))}

)
= x(1) + x(3).

Rewriting ∆ yields

∆ = `123(x(1), x(1), x(3))− 2(2x(1) + x(3)) + 3(2x(1) + x(3))

− 2`11(x(1), x(1))− `13(x(1), x(3))

= x(1) + x(3) − 2(2x(1) + x(3)) + 3(2x(1) + x(3))− x(1) − 2(x(1) + x(3))

= 0.

Hence, we have tail dependence in X and ∆ is zero as extreme events in dimension three do not

matter.

Proof of proposition 2.2 The result directly follows from Einmahl et al. (2012), theorem

4.6, and Bücher & Dette (2013), Bücher et al. (2014)
√
k(ˆ̀(x)− `X(x),x ∈ [0, 1]d, is asymptotic

normal with zero mean and covariance matrix equal to a sum of a centered Gaussian field and

Gaussian processes. It is assumed that `X(x) < x′1 to ensure the asymptotic variance of ˆ̀X(x)

is non–zero. This holds if at least one bivariate pair (X(i), X(j)) is asymptotic dependent. In R2,
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where x = (x(i), x(j)), it holds that

√
k ˆ̀

ij(x
(i), x(j))

d→ N(`(x(i), x(j)), σ2
` ), x

(i), x(j) > 0,

where

σ2
` = `(x(i), x(j))− 2x(i)`∂i(x

(i), x(j))− 2x(j)`∂j(x
(i), x(j)) + x(i)`2

∂i(x
(i), x(j))

+ x(j)`2
∂j(x

(i), x(j)) + 2`∂i(x
(i), x(j))`∂j(x

(i), x(j))(x(i) + x(j) − `(x(i), x(j)),

with `∂j(x) := (∂`/∂x(j))(x) denoting the partial derivative of the STDF with respect to

argument x(j). According to equations (5) and (6), and setting x = 1, R̂(x) is also asymptotic

normal. Asymptotic normality of ∆̂ directly follows from equation (7). Thus,

∆̂
d→ N(∆, σ2

∆̂
),

with

σ2
∆̂

= k−1σ2
ˆ̀ + k−1

∑
i<j≤2

σ2
ˆ̀
i
+ 2
( ∑
i<j≤2

Cov(ˆ̀
i, ˆ̀) +

∑
i<j≤2;g<h≤2;i 6=g

Cov(ˆ̀
ij, ˆ̀

gh)
)
∈ (0,∞).

Whenever partial derivatives of the STDF do not exist, the same reasoning for the limit law of
√
k∆̂ applies using asymptotic results in Bücher et al. (2014).

6.3 Auxiliary simulations

The ratio κ3/κ2 gives the share of bivariate extremes that are also extremes in dimension three

or larger; as this ratio conditions on the occurrence of bivariate extremes, the magnitude is

driven by multivariate (d > 2) tails and is not driven by the number of bivariate extremes, as is

the case for κ3. Table 5 reports averages from 1000 simulation repetitions of all three measures

for the distributions considered in the simulations of Section (3). Sample size, dimension and

choice of k are as in the empirical application of Chapter (4).

Note, the only distribution in dimension 7 that fulfills the null of no HOTDs is the max factor

model with loading matrix B0
7 . In this case, both κ3 and κ3/κ2 are close to zero. Theoretically,

they should be exactly zero, however, for a sample size of n = 750 this distortion can be be

interpreted as finite sample bias. Yet in this case, a simple t-test would not indicate a statistical

significance (α = 0.05). For the meta t-distribution, κ3/κ2 grows with decreasing degree of

freedom of the copula, which governs the strength of bivariate and multivariate extremes. Thus,

κ̂3/κ̂2 is indeed capable of reflecting the severeness of HOTDs.
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Table 5: Means and standard deviations of simulated κ̂3/κ̂2, κ̂3, κ̂2 for max factor models
and meta t-distributions from Section 3 with 1000 repetitions, d = 7, n = 750 and k as in the
empirical application.

κ̂3/κ̂2 κ̂3 κ̂2

t-distr.
νC
5 0.507 0.212 0.419

(0.070) (0.040) (0.046)
10 0.453 0.168 0.371

(0.071) (0.036) (0.042)
15 0.431 0.151 0.351

(0.072) (0.033) (0.041)
20 0.425 0.145 0.344

(0.072) (0.032) (0.040)

max factor
B0
7 0.050 0.040 0.795

(0.027) (0.022) (0.048)
BA1
7 0.590 0.500 0.852

(0.063) (0.035) (0.033)
BA2
7 0.558 0.534 0.958

(0.062) (0.053) (0.028)
BA3
7 0.517 0.328 0.633

(0.019) (0.028) (0.048)
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