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Abstract

Emerging technologies are in the core focus of supra-national innovation policies.

These strongly rely on credible data bases for being effective and efficient. How-

ever, since emerging technologies are not yet part of any official industry, patent or

trademark classification systems, delineating boundaries to measure their early devel-

opment stage is a nontrivial task. This paper is aimed to present a methodology to

automatically classify patents as concerning service robots. We introduce a synergy of

a traditional technology identification process, namely keyword extraction and veri-

fication by an expert community, with a machine learning algorithm. The result is a

novel possibility to allocate patents which (1) reduces expert bias regarding vested in-

terests on lexical query methods, (2) avoids problems with citational approaches, and

(3) facilitates evolutionary changes. Based upon a small core set of worldwide service

robotics patent applications we derive apt n-gram frequency vectors and train a sup-

port vector machine (SVM), relying only on titles, abstracts and IPC categorization of

each document. Altering the utilized Kernel functions and respective parameters we

reach a recall level of 83% and precision level of 85%.
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1 Introduction

Innovation policies that address promising emerging technologies serve to reach macroe-

conomic objectives such as promoting sustainable growth and prosperity. They are legiti-

mated due to the various uncertainties associated with new technological fields that result

from coordination problems in complex innovation chains with scale economies, multilat-

eral dependencies, and externalities. In order to develop effective policy measures, one

has to carefully recognize emergence patterns and assess possible downstream effects.

This is a demanding task since these patterns vary across technologies, time, scale, and re-

gional and institutional environments. It is important that policy advices rely on credible

data sources that aptly display early research and innovation results at the very beginning

of value creation. However, as long as a new technology has not yet been specified within

official statistical schemes, the identification of delineating boundaries in respective data

bases is a nontrivial problem.

Service robotics (hereafter SR) is a current example of an emerging technology. The Inter-

national Federation of Robotics (IFR) has been working on a service robot definition and

classification scheme since 1995. A preliminary definition states that a service robot is a

robot that performs useful tasks for humans or equipment excluding industrial automation

applications. Industrial automation applications include, but are not limited to, manufac-

turing, inspection, packaging, and assembly (compare www.ifr.org and ISO 8373:2012).

Service robots can be further subdivided into those for non-commercial personal use like

domestic servant robots or automated wheelchairs, and those for professional commercial

services, for which they are usually run by trained operators like fire-fighting or surgery
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systems in hospitals. Hence, SR contribute to both traditional and a variety of new types

of services.1

As a result of the arising multiplicity, the technology field so far is not clearly confined

in databases and thus neither part of any existing official industry, patent or trademark

classification system nor of any concordances not to mention national account systems.

Having said that, distinguishing SR from industrial robotics (hereafter IR) is hardly possi-

ble. This so far has impeded a comprehensive assessment of the economic impacts of SR

diffusion, especially with respect to the magnitude, timing and geographical localization.

With our work we make SR tractable by developing a search strategy to identify it within

patent databases. Moreover, we model the approach not to be limited to patents but to be

applicable for scientific publications as well. In addition, the general methodology is not

even confined to the field of robotics, but could be applied to any similar identification

problem. Differentiating from classical lexical and citational approaches used by other

scholars our approach introduces a machine learning algorithm that is utilized as a classi-

fier. Being trained on some sample data this classifier acts as an ’expert’. The machine is

able to decide whether a patent belongs to the category of service robotics or not – with a

certain degree of precision. Since there are several approaches in the scientific literature

which deal with analogous problems of technology detection and classification, we hereby

set out to (1) limit expert bias regarding vested interests on lexical query methods (with

respect to term inclusion and exclusion), (2) avoid problems with citational approaches

such as the lack of portability, and (3) facilitate evolutionary changes.

The following sections are organized as follows: First, we give an overview of previous

technology identification approaches referring to examples of similar emerging fields that

lacked classification schemes in its infant phase. Second, we present our step-by-step

methodology for identifying developments in an emerging field characterized only by its

early applications. It successively describes the use of patents as apt data source, the

retrieval of a structured core dataset, and the use of an automated machine learning

algorithm, namely a support vector machine (hereafter SVM). Finally, we present results

of our pioneering approach and conclude with future scope for improvement.

1Beyond its potential productivity effects SR is believed to induce visible changes in employment structures

(Autor et al. 2003, Frey and Osborne 2013, Graetz and Michaels 2015). Its potential to change organization

processes in firms as well as everyday life of people is already visible in the diffusion of semi-autonomous

physical systems out of industrial fabrication and into service economies.
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2 Literature Review

There is no widely agreed-upon definition of emerging technologies (Halaweh 2013). The

initial lack of common knowledge, standards, and specifications entails uncertainties along

various dimensions (Stahl 2011). Future costs and benefits, relevant actors, adoption be-

haviour, and potential socio-economic implications such as creative destruction are highly

unclear (Srinivasan 2008). Therefore, scientific studies have been using bibliometrics to

monitor trends for a variety of domains and assess the nature of emerging technologies

already within scientific research and early development.

No matter what the paramount aim, all analyses greatly rely on well-founded data acquisi-

tion, which first and foremost identifies the technology under consideration. With ongoing

technological advancements as well as computational power more and more elaborated

strategies have accrued. Most often, technology detection within patent or publication

databases is predicated on either (1) lexical, (2) citationist, or mixed search strategies.2

For example, early conceptions of apt queries for nanotechnology proved to be difficult,

as the first specific IPC-subclass B82B3, which basically refers to nano-structures and their

fabrication, was not introduced before the year 2000 and did not incorporate applications

from former years (Noyons et al. 2003). In its infancy, it contained only estimated 10

percent of all relevant documents. Hence, the first scientific identification approach for

nanoscience and technology relied instead on a lexical query developed in 2001 by the

Fraunhofer Institute for Systems and Innovation Research (ISI) in Germany and the Centre

for Science and Technology Studies (CWTS) at Leiden University in the Netherlands.

A lexical query (1) is a search for specified terms, which in the most simple case might

consist of only one word (like ’nano*’ for nanotechnologies) or a basic combination (like

’service robot*’). This primal string is applied to titles, abstracts, keywords or even the

whole text body of examined documents. Some of these documents might prove to be rel-

evant in the eyes of experts and thus offer additional terms starting an iterative process.4

Considering emerging fields the number of terms within a search string that is developed

2With respect to scientific publications another common strategy is to identify core journals. All articles

within those journals are then considered relevant. For patents though, this search strategy is obviously not

feasible, which is why we do not deepen it further.
3Only in 2011 a second sub-class, B82Y, focusing on specific uses or applications of nano-structures was

introduced for IPC and the Cooperative Patent Classification (CPC). Previously, related nano patent documents

could only be identified if they were classified via the European Classification System (ECLA) with the specific

sub-class Y01N.
4Such a search strategy is called evolutionary, if subsequent researchers may build upon existing query

structures by progressively incorporating terms that better specify the technology and widen its scope

(Mogoutov and Kahane 2007).
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in such a lexical manner naturally grows rapidly. More and more scholars and practi-

tioners become attracted by the field 5 adding alternatives and broadening interpretations

in the course of time. Referring to nanotechnology as a striking example again, in or-

der to keep track of the dynamically spreading nano-fields Porter et al. (2008) comprised

a modular Boolean keyword search strategy with multiple-step inclusion and exclusion

processes, which had to be subsequently enhanced and evolutionary revised (Arora et al.

2013). Identification problems are heightened by the fact that both authors of scientific

publications as well as applicants of patents are interested in some rephrasing: The former,

because they might benefit from a serendipity effect if their label establishes itself in the

scientific community. And the latter because of encryption and legalese issues: Applicants

may want to re-label critical terms, both to hide relevant documents and technical infor-

mation from actual rivals and to build patent thickets of overlapping IPR which precludes

potential competitors from commercializing new technology altogether.

A lexical query can be enriched (or fully substituted, if a core of documents is already

verified) by adding documents and inherent terms identified via citational approaches (2),

for instance by including new publications that are cited by at least two authors belonging

to an initial database (Garfield 1967, Bassecoulard et al. 2007)6 or, regarding patents, by

including applications that refer prior art that has been part of the previously established

core. In our example, Mogoutov and Kahane (2007) enriched an initial nanostring by

a number of subfields, automatically identified and defined through the journal inter-

citation network density displayed in the initial core dataset of nano-documents. Relevant

keywords linked to each subfield were then tested for their specificity and relevance before

being sequentially incorporated to build a final query.

The instance of nanotechnology illustrates well how much effort the development of an

evolutionary query yields. Lately, private interests – rather than governmental or scientific

research - have driven even more elaborated technology identification procedures: Com-

panies that seek to monitor competitors or investigate latest research trends have started

to rely on more cost-efficient processes in order to lower resulting expenditures. As a side

effect, some encompassing literature on specialized text mining techniques has emerged,

which goes beyond lexical and citation based procedures. To name just a few, Li et al.

(2009) attempt to find significant rare keywords considering heterogeneous terms used

5For the instance of nanotechnology, to which we refer throughout, Arora et al. (2014) measure the growth

in nano-prefixed terms in scholarly publications and find that the percentage of articles using a nano-prefixed

term has increased from less than 10% in the early 1990s to almost 80% by 2010.
6This approach naturally harbours the risk of including generic articles of any scientific field that somehow

happen to be cited in a technologically unrelated context. Bassecoulard et al. (2007) therefore incorporate a

statistical relevance limit relying on the specificity of citations.
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by assignees, attorneys, and inventors. Yoon and Park (2004) argue that citation analysis

has some crucial drawbacks and propose a network-based analysis as alternative method,

that groups patents according to their keyword distances. Lee (2008) uses co-word analy-

ses regarding term association strength and provides indicators and visualization methods

to measure latest research trends. Lee et al. (2009) transform patent documents into

structured data to identify keyword vectors, which they boil down to principal compo-

nents for a low-dimensional mapping. These facilitate the identification of areas with low

patent density, which are interpreted as vacancies and thus chances for further technical

exploitation. Erdi et al. (2013) use methods of citation and social network analysis, cluster

generation, and trend analysis. Tseng et al. (2007) attempt to develop a holistic process

for creating final patent maps for topic analyses and other tasks such as patent classifi-

cation, organization, knowledge sharing and prior art searches. They describe a series of

techniques including text segmentation, summary extraction, feature selection, term as-

sociation, cluster generation, topic identification and information mapping. Engineering

research itself shares some interest in following latest developments as well. For the field

of robotics, Ruffaldi et al. (2010) is a good instance: They visualize trends in the domains

of rehabilitation and surgical robotics identified via text mining.

3 Methodology

Following Mogoutov and Kahane (2007), the relative performance of different identifi-

cation approaches may be compared via the respective degree of intervention of experts,

their portability, their transparency regarding core features and respective impacts on fi-

nal results, their replicability, their adaptability, meaning its ability to produce valid results

while the technology in question keeps evolving, their updating capacity, and the extent

and relevance of the data obtained. Certainly, no single best approach exists, since any

method has its advantages and drawbacks according to these criteria. We will conclude

on the relative performance of our approach at the end of this paper.

In line with the current text mining literature we propose a machine learning algorithm

instead of a purely lexical, purely citationist or mixed query. Consequently, we first identify

a small core patent dataset consisting of 228 patent applications and then let automated

algorithms identify emerging technology boarders.

Patents as Data Source

As soon as a technology is sufficiently well specified, generically distinguishable, and ide-

ally properly classified there are various techniques to map ongoing advancements. How-
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ever, if such a delineation is not yet established and no broadly accepted consensus has

been reached so far, economists most often rely on lexical, citation based, or mixed search

strategies for prior identification purposes that help to trace related emerging fundamen-

tal and application knowledge in academic articles and patent documents.7 As regards the

technology under consideration, it is important to acknowledge that according to the IFR,

the intended use, and as a consequence, the factual field of application determines the

delimitation of SR from IR. Thus, patents are the data source of choice for an automated

SR identification, since patentability requires an indication of the intended commercial

implementation. Patents, despite all difficulties that arise in their use and interpretation,

are widely accepted as indicator for innovative activity (Griliches 1990, Hall et al. 2005).

Especially citation structures facilitate tracing knowledge flows (see, for instance, Jaffe

et al. 1993, Thompson 2006, Fischer et al. 2009, Bresnahan 2010) and thus make tech-

nology development patterns visible. Hence, we started with a patent search strategy with

a vision to extrapolate it to other lexical sources.

Building a structured core dataset that is suited for later application in machine learning

requires the identification of a sufficiently large number of documents, that are validated

as part of the technology and capture most of its hitherto variety of developments. This

validation is granted by independent technological experts, who can either provide those

documents themselves or may be given a predefined assortment to adjudicate on. The

latter decreases a potential expert bias with respect to multifaceted preferences but might

give rise to a negative influence of the researcher himself, who has to develop a search

method for this primal assortment. Facing this trade-off, we decided to provide experts

with a predefined core dataset.

Retrieval of a Core SR Patent Dataset

All unstructured patent text data as well as related document meta data were extracted

from the ’EPO Worldwide Patent Statistical Database’ (PATSTAT), version April 2013.8

First, we extracted all patents that were either sorted in IPC class B25J9 or contained

a substring like ’robot*’ in their respective title or abstract.10 Hence, we established a

7Consequently, the adequate data sources for this identification process are the same that comprise the

targets of subsequent analyses which might give cause for some criticism.
8This database encompasses raw data about 60 million patent applications and 30 million granted patents,

utility models, PCT applications, etc. filed at more than 100 patent authorities worldwide.
9MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES. See http://www.wipo.int/

classifications/ipc/en/
10According to the USPTO, most of the manipulators classified in B25J are industrial robots. See http:

//www.uspto.gov/web/patents/classification/cpc/html/defB25J.html.
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set of documents describing robotic devices. Second, in order to identify a subset of

potential SR patent documents that comprise most of the hitherto existing developments

we created 11 sub-queries based mainly upon IFR application fields for service robots.

These queries consisted both of IPC subclasses (mostly on 4-digit-level) and stemmed

lexical terms, combined modularly in a Boolean structure.11

The second step provided us with 11 non-disjunct subsamples of potential SR patents.

While other approaches regarding similar tasks of technology identification from there on

further evaluate candidate terms by testing, assessing and adjusting terms and class codes

to address weaknesses and follow emerging research trails manually (Porter et al. 2008),

we did not alter the primal modular Boolean search. Instead, as indicated above, we

left it to technological experts to verify the underlying categorization. Two independent

academic expert groups with 15 scientists, affiliated with the

• High Performance Humanoid Technologies (H2T) from the Institute for Anthropo-

matics and Robotics at KIT, Germany, and the

• Delft Center for Systems and Control / Robotics Institute at TU Delft, Netherlands,

took on the task to decide which of the patents belonged to SR and which belonged com-

plementarily to IR. The above experts were specialized in humanoid robotics, computer

science, and mechanical engineering. Their experience in the field of robotics varied be-

tween 1 and 15 years. We provided them with 228 full body versions of potential SR

patents from all over the world, extracted with the primal subsample queries. All patents

listed in PATSTAT disclose at least English titles and abstracts. Thus, the judging scientists

could always refer to these text parts as well as to all engineering drawings, no matter

what the language of the remaining text body was.

For the application of automated machine learning approaches we then transformed the

unstructured patent document text into structured data. This included several steps,

namely (1) combining titles and abstracts in one body and splitting the resulting strings

into single terms in normal lower cases, (2) removing stop words, (3) stemming, i.e. re-

ducing inflected words to their stem, (4) constructing n-grams of term combinations (up

to 3 words in one), and (5) deriving normalized word and n-gram frequencies for each

document.12

11We have included one example of such a sub-query in the appendix. All other queries are available upon

request.
12We also tried to incorporate another step (6), which added IPC dummy variables to indicate class belong-

ings. These additional attributes where later abandoned by the following feature selection process, which

suggests that these IPC class belongings are not significant for the categorization at hand.
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With these normalized frequencies a matrix was constructed with columns being variables

and rows being their observations. This matrix, shown in table 1, together with the bi-

nary vector indicating which observations had been identified as SR patents, served as a

training input for the machine learning approach.

Table 1: Structure of patent word and n-gram frequency matrix with binary decisions as input for machine

training. The lighter gray shaded area indicates an example of a subsample, on which the machine

is trained. The darker gray area is then a respective example for a subset of data which is used for

testing the fitness of the classification process. The non-shaded area at the bottom refers to new

data, on which the SVM is able to decide based on the previous training.

Attribute vectors x binary
patent wordw1 wordw2 . . . bigramb1 bigramb2 . . . trigramt1 trigramt2 . . . decision y

1 freq.1|w1 freq.1|w2 . . . 1
2 freq.2|w1 . . . -1

. . . . . . . . .
205 freq.205|w1 . . . freq.205|b2 . . . -1

206 freq.206|w1 . . . . . . 1
. . . . . . . . .

228 freq.228|w1 . . . freq.228|t2 . . . -1

xxx freq.xxx|w1 . . . . . . ?
xxx freq.xxx|w1 . . . ?
. . . . . . . . .

Machine Learning for Classification Analyses

Statistical classification using machine learning algorithms has long been implemented for

the purpose of solving various problems and tasks such as computer vision, drug discov-

ery or handwrite and speech recognition. Numerous different methods were developed

and new ones still appear. However, there has been no one, at least to our knowledge,

using statistical classifiers on the basis of a primal lexical query for the purpose of detect-

ing an emerging technology. We considered a number of alternatives (Kotsiantis 2007)

to the aforementioned SVM, such as k-Nearest Neighbor, Neural Networks, and Genetic

Algorithms before starting with our particular algorithm. According to the so called no-

free-lunch theorem (Wolpert and Macready 1997) there is no general superior machine

learning method and every problem has to be tackled individually depending on its prop-

erties. We therefore assessed the aforementioned algorithms according to run-time per-

formance, sensitivity to irrelevant or redundant features, and ability to overcome local

maximums. In a nutshell, SVM proved to be the most suitable algorithm and this decision
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was in line with computer science experts’ opinions from robotics groups at the Karlsruhe

Institute of Technology (KIT).

Support Vector Classification

The method of support vectors was introduced in the middle of the 1960s (Guyon et al.

1993, Cortes and Vapnik 1995). The original approach together with its various extensions

is now one of the most acknowledged and recommended tools among modern machine

learning algorithms. In the following we briefly describe its core concept and discuss

some advantages that are found relevant for the problem at hand. The core idea of the

method is, simply put, to create a unique discrimination profile (represented by a linear

function) between samples from (usually two13) different classes – as depicted for a two-

dimensional space in figure 1(a).

(a) linear (b) non-linear

Figure 1: Working principle of a Support Vector Machine for linearly separable data (a) illustrated by

Nilsson et al. (2006) for two dimensions, and linearly non-separable data (b) for examplarily

chosen three dimensions in an own illustration. Note the optimal separating decision planes in

the middle and support vectors (circled in blue). In both cases, the width of the corridor defined by

the two dotted lines (a) or outer planes respectively (b) connecting the support vectors represents

the margin of the optimal separating decision plane. In case of text classification axes represent

normalized frequency of keyword’s appearance

The result is a line – or more generally a hyperplane – which is constructed in such a way

that the distance between two parallel hyperplanes touching nearest samples becomes as

large as possible. This way the method is trying to minimize false classification decisions.

13There exist some multiclass SVM approaches. See Duan and Keerthi (2005) for a review.
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The “touching” data points are termed support vectors. In fact, the resulting separation

plane is shaped only by these constraining (= supporting) points. Below we provide

the mathematical notation of a support vector machine following Hsu et al. (2010), an

article which has to be recommended as a comprehensive introduction to the method for

purposes such as ours. Formally defined, we have a training set (xi,yi) of i = 1, . . . , l sample

points (here: our patents), where every xi ∈ Rn is an attribute vector (consisting of our

normalized word and n-gram frequencies) and yi ∈ {−1,1}l is a decision for that specific

data point which thus defines its class. The SVM then yields the solution to the following

optimization problem (Boser et al. 1992, Guyon et al. 1993):

min
w,b,ξ

1
2

wT w+C
l

∑
i=1

ξi

s.t. yi
(
wT

Φ(xi)+b
)
≥ 1−ξi (1)

ξi ≥ 0

in which w is the normal vector between the separating hyperplane and the parallel planes

spanned by the support vectors. The mapping Φ is related to so called Kernel functions,

such that K(xi,x j)≡Φ(xi)
T Φ(x j). For problems in which the data under consideration are

not linearly separable (compare figure 1(b)), Φ maps the training attributes into a higher

dimensional space where a hyperplane may be found. Table 2 summarizes common Kernel

functions and their respective parameters γ, r, and d (Burges 1998, Ali and Smith-Miles

2006, Pedregosa et al. 2011, Manning et al. 2008)14.

Table 2: Kernel functions used for the SVM

Kernel function Formula

Polynomial (y〈x,x′〉+ r)d

Radial basis function (rbf) exp(−y|x− x′|2)
Sigmoid tanh(〈x,x′〉+ r)

The above version of the classification procedure also incorporates the so called Soft-

Margin method (Cortes and Vapnik 1995) that allows for mislabeled training sample

points. The approach introduces ξi as non-negative slack variables which measure the

extent of incorrectly classified items in the training set. ∑
l
i=1 ξi is thus a penalty term, and

C a penalty parameter, on which we will comment later.

14Since there is no possibility to determine in advance which Kernel function should be used, the choice

of the depicted functions was mostly motivated by their popularity in classifiers and availability within the

software package used.
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Training Algorithm, Classification, and Evaluation

Figure 2 depicts the flow chart of our algorithm. First, we preprocessed the data in order

to eliminate irrelevant features and to obtain a final dataset of feature vectors. When

we turn to the result section, the necessity of this preprocessing becomes clearer. In a

second step we started the SVM training process. It comprised three iterative steps that

are found in almost any machine learning approach: training of the model, its evaluation

and optimization. We realized all these steps for our SVM using the python programming

language and its tool python scikit-learn for machine learning (Pedregosa et al. 2011).15

Finally, the classifier with the best model fit was applied on some test data.

The algorithm, first, randomly splits the training dataset X into training and test parts.

Second, it fits the model based on the training dataset leaving out the test data. During

the training process the data are again split into k parts. The algorithm then trains the

model on k-1 parts and validates on the k-th part. The training is performed several

times so that every part serves as a validation dataset. The number of training repetitions

is reflected by a cross-validation parameter and can be specified. Thus, it is subject to

variation during the overall fitting of the model itself. Figure 3 illustrates the k-fold cross-

validation process.

The evaluation of our model is based on the criteria of precision and recall. The former

measures the ability of a classifier not to label objects as positive that should have been

labeled negative. Formally, precision is the total number of true positives (tp) divided by

the sum of all positives including false positive errors (fp).

precision =
t p

t p+ f p
(2)

The latter, recall, measures the ability of a classifier to find all positives or, again more

formally, the number of true positives divided by a sum of true positives and false negative

errors (fn).

recall =
t p

t p+ f n
(3)

On the one hand, a model with a good recall but bad precision will find all positive samples

– but will have some of them being actually negative. On the other hand, a model with

bad recall but high precision will not have false positive objects, however it will miss some

15We do not discuss the exact implementation of the support vector machine algorithm in the python scikit-

learn tool. All necessary materials can be found in open access libraries following the reference provided

above. However, the appendix to this paper provides our own script written in IPython Notebook (Pérez and

Granger 2007).
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Preprocessing

Learning
Training

Classification

Feature selection* Dataset of keyword vectors

Random split dataset:

Part X – (training dataset,

85%) for hyperplane

construction. Part Y – (test

dataset, 15%) to apply the

hyperplane for separation

Randomly split the

training set into number

of parts specified by

cross-validation parameter

% no. of variables

100 30987
99 14116
98 1205
95 252
90 99
80 28

* If there are mostly zero entries

in a variable, it might not contain

a lot of information for classfica-

tion and is considered redundant.

98% were chosen as a threshold:

Keep a new part away

as a validation set

Use new kernel** (/new

parameters) and form hyper-

plane based on all left parts

except the validation set

Performance test: Test

hyperplane with validation

set, remember result.

Recall / precision

objectives reached?

Tuning (alter kernel/

alter parameters)

Have all parts served as

validation set?
** Kernel: Polynomial, Radial

basis (rbf), Sigmoid. Parameters

according to tables 2 and 3

Use model with best fit for

performance evaluation:

Apply hyperplane on part Y

Results with best model fit

no

yes

no

yes

Figure 2: Flow chart of the machine discrimination algorithm with preprocessing, support vector training,

and final classification.
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Figure 3: k-fold cross-validation process

of the true positives. In order to balance these two measures we used a so called f1-score

that can be seen as their weighted average:

f 1 = 2 · precision∗ recall
precision+ recall

(4)

To optimize our classifier we calibrated it to have the highest possible f1-score. Tuning of

the model was done by varying the cross-validation parameter, the kernel functions, and

their respective parameters.

4 Results

The sample used in the machine learning process consisted of 228 patents with valid

expert decisions. It contained 98 SR patents and 130 IR patents according to our ex-

pert group’s validation. As a result of the transformation of unstructured patent text into

structured data we observed 30,987 different features (or variables) within these patents,

which included key-words, bigrams, and trigrams.16.

The resulting matrix (228 x 30,987) had to be preprocessed before serving as an input

for the SVM, due to the fact that the majority of the variables contained zero entries.

This means that only a small number of key-words and n-grams are shared by a majority

of the patents. At first glance this information could appear confusing. The explanation

lies in the variety of SR applications: Descriptions of significantly different service robots

with very unlike applications contain a huge number of dissimilar key-words and key-

word combinations. Most of these are uniquely used in their specific contexts and thus

appear with a very low frequency. Figure 4 illustrates this fact by showing typical relative

appearances of normalized frequencies of four randomly chosen variables.

16We even included IPC classes in an early stage of development, but did not find any of these classifications

to become part of the support vectors. They turned out to irrelevant for the discrimination procedure and

were thus removed during the feature selection process
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Figure 4: Four histograms of random key-words and one bigram.

Thus some variables contained too little information and introduced noise instead. Conse-

quently, these insignificant features had to be excluded from the data – for the purpose of

improving the SVM performance. For example, if a key-word (or n-gram) appeared in only

one patent, this variable would not have helped in solving the problem of classification.

Our feature selection process served to exclude such a redundant feature. We imple-

mented a threshold that at least 2% of the entries of a variable in each class (SR vs. IR)

should have non-zero entries. The table in the flow chart (figure 2) shows the dependency

between the number of variables and different thresholds. With this selection process the

resulting matrix was reduced to 1,206 variables for our 228 observations/patents. We

provide these variables/terms in the tables 10 to 16 in the appendix. Finally all variable

frequencies were scaled to the interval [0,1] such that a second normalization process set

the maximum frequency in the sample to 1.

Figures 5 and 6 show normalized frequencies of attribute pairs and groups of three re-

spectively. Coloured dots indicate the expert classification as SR (red) and IR (blue).

SVM specific outcomes

In order to eliminate negative influence of the unbalanced dataset we introduced weights

in our SVM proportionate to SR and IR classes. Following the cross-validation procedure

the support vector machine was fit on to a 85% of the original dataset. The remaining

15% were kept for testing purposes. The split was random and its ratio is an arbitrary

choice of authors.
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Figure 5: Normalized frequencies of randomly chosen attribute pairs – here key-words. Coloured dots indi-

cate the expert classification as SR (red) and IR (blue).

Figure 6: Normalized frequencies of randomly chosen attribute groups of three – here key-words. Coloured

dots indicate the expert classification as SR (red) and IR (blue).

The cross-validation parameter was set to 3 and 4 determining the amount of random

splits of a training dataset into a training and evaluation set. Another parameter that

was varied while searching for a better model is so called C parameter. The following

citation nicely explains the main properties of this penalty parameter: “In the support-

vector network algorithm one can control the trade-off between complexity of decision rule

and frequency of error by changing the parameter C” (Cortes and Vapnik 1995, p. 286).

Finally, the three different kernel functions from table 2 were considered. In particular, the

first was a polynomial function and its γ, degree, and r coefficient. The second was a radial

basis function (rbf) and its γ constant. The third was a sigmoid function and its γ and r

constant. Table 3 presents all kernel parameters and their values that were considered to

find the best performing classifier – as well as all eventually chosen values.

Exhaustive simulations with all possible combinations of the above mentioned parameters

yielded the best f1-score of the model. Our final model showed an 85% precision and

83% recall. It contained a radial basis function kernel with γ equal to 0.005 and C equal

to 10. The training set was randomly split into 3 equal parts for cross validation. The
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Table 3: Model tuning parameters and respective values

Parameter Varied values Chosen values

cross-validation (cv) 3,4 3
complexity (C) 10, . . . ,1000 10
γ of rbf kernel 10−6, . . . ,10−2 0.005
γ of polynomial kernel 10−6, . . . ,10−2 not chosen
d of polynomial kernel 1,2,3 not chosen
r of polynomial kernel 1,2,3 not chosen
γ of sigmoid kernel 10−6, . . . ,10−2 not chosen
r of sigmoid kernel 1,2,3 not chosen

resulting discrimination plane between the two classes of patents was constructed using

192 support vectors, meaning that only these sample observations were significant for

classification. Table 4 presents a classification report after classifying the test set of our

sample.

Table 4: Classification report

precision recall f1-score No. of patents in test set

SR 75% 94% 83% 16
IR 93% 74% 82% 19

Avg. / total 85% 83% 83% 35

Scope for Improvement

There is some scope for an even more precise technology identification. First, there is

still room to increase the performance of the SVM method, namely regarding the kernel

functions. Although there have not been any successful attempts to introduce automatic

kernel selection algorithms yet (Ali and Smith-Miles 2006), it is probably possible to find

a better function for our problem at hand. Second, the support vector machine can be

seen as a first-tier machine classifier that we just started with. Other methods like genetic

algorithms, neural networks or boosting as well as their combinations could be applied

in additional steps. Finally, applying principal component analyses (PCA) to our matrix

of variables could provide some insights about a similar behavior of different key words

in patents, which means that they could be grouped and analyzed together. Moreover,

applying PCA in SVM we could say whether these groups of variables are significant in

identifying an emerging technology – like service robotics in our show case.
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5 Conclusion

In this paper we proposed a novel methodology for detecting early developments of an

emerging technology in patent data. Our method uses a support vector machine algorithm

on the example of robotics patents. The resulting model is able to find 83% of service

robotics patents and classify them correctly with a probability of 85%.

There are several advantages of our method regarding technology classification tasks,

which we will discuss along the criteria of Mogoutov and Kahane (2007) that we men-

tioned above: First, experts do not choose which terms should be added to or excluded

from the primal search, hence the typical lexical bias towards preferred subfields is limited.

Speaking of lexical versus citationist apporaches, our method also avoids a major draw-

back of citational methods which circle around a core dataset and rely on future works

explicitly referring to this prior art: Since citations in patents are generally rare17, for

young emerging technologies in particular the citation lag decreases the expected number

of citations for any given document to a negligible amount. Second, the procedure offers

strong portability, such that it can easily be applied to scientific publications - taken for

instance from Web of Science. Moreover, our step-by-step classification method can basi-

cally be applied to any emerging technology - not only those that arise as an initially small

subset consisting of niche applications like SR emerging out of Robotics. Nanotechnology,

which in this respect is again a meaningful instance, would have been hard to detach

from some well-defined mother technology. In fact, it became an umbrella term for tech-

nological developments from various directions that had solely in common to work on a

sufficiently small scale and to make intentionally use of the phenomena that arise on this

scale. Nanotechnology thus consolidated endeavours from physics, chemistry, material

technologies and biology and had a converging character. The same is true for Industry

4.0, which is a superordinate concept describing digitally cross-linked production systems

and thus enveloping various heterogenous sub-technologies that are hardly classifiable.

One of our future tasks will thus comprise the application of our method on historical nan-

otechnological patent sets as well as on Industry 4.0 technologies in order to demonstrate

the general applicability and robustness of our method. Third, our algorithm approach

shows high adaptability. Due to its learning nature it is able to produce valid outcomes

although the technology under consideration is constantly evolving. Fourth and of capital

importance, the proposed method performs well in terms of recall and precision scores,

proving sufficient extent and relevance of the obtained data.

17Within PATSTAT, for instance, more than 90% of the listed patent applications are followed by less than

three forward citations, 74% do not show any at all.
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Appendix

Table 5: Important robot definitions according to ISO 8373:2012

Definition

Robot: Actuated mechanism programmable in two or more axes with a degree of autonomy, moving
within its environment, to perform intended tasks.
Note 1 to entry: A robot includes the control system and interface of the control system.
Note 2 to entry: The classification of robot into industrial robot or service robot is done according
to its intended application.

Autonomy: Ability to perform intended tasks based on current state and sensing, without human interven-
tion.

Control System: Set of logic control and power functions which allows monitoring and control of the mechanical
structure of the robot and communication with the environment (equipment and users).

Robotic Device: Actuated mechanism fulfilling the characteristics of an industrial robot or a service robot, but
lacking either the number of programmable axes or the degree of autonomy.

Table 6: SR application examples for personal / domestic use according to the IFR

Applications

Robots for domestic tasks Robot butler, companion, assistants, humanoids
Vacuuming, floor cleaning
Lawn mowing
Pool cleaning
Window cleaning

Entertainment robots and Toy robots Robot rides
Pool cleaning
Education and training

Handicap assistance and Robotized wheelchairs Personal rehabilitation
Other assistance functions

Personal transportation

Home security and surveillance
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Table 7: SR application examples for professional / commercial use according to ?

Applications

Field robotics Agriculture
Milking robots
Forestry
Mining systems
Space robots

Professional cleaning Floor cleaning
Window and wall cleaning
Tank, tube and pipe cleaning
Hull cleaning

Inspection and maintenance systems Facilities, Plants
Tank, tubes and pipes and sewer
Other inspection and maintenance systems

Construction and demolition Nuclear demolition and dismantling
Other demolition systems
Construction support and maintenance
Construction

Logistic systems Courier/Mail systems
Factory logistics
Cargo handling, outdoor logistics
Other logistics

Medical robotics Diagnostic systems
Robot assisted surgery or therapy
Rehabilitation systems
Other medical robots

Defense, rescue and security applications Demining robots
Fire and bomb fighting robots
Surveillance/security robots
Unmanned aerial and ground based vehicles

Underwater systems Search and Rescue Applications
Other

Mobile Platforms in general use Wide variety of applications

Robot arms in general use Wide variety of applications

Public relation robots Hotel and restaurant robots
Mobile guidance, information robots
Robots in marketing

Special Purpose Refueling robots

Customized robots Customized applications for consumers

Humanoids Variety of applications
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Table 8: Exemplary extract of robot patents under consideration with respective titles, publication numbers

(given by the patent authority issuing the patent), filing dates (on which the application was

received), and expert classifcation decisions

Title Publication no. Filing date SR y/n?

Remote control manipulator 968525 1962-06-25 n (-1)
Folded robot 2061119 1979-10-24 n (-1)
In vivo accessories for minimally invasive robotic surgery 2002042620 2001-11-06 y (1)
Apparatus and method for non-destructive inspection of large structures 6907799 2001-11-13 y (1)
Surgical instrument 2002128661 2001-11-16 y (1)
Robotic vacuum cleaner 2003060928 2001-12-04 y (1)
A cleaning device 1230844 2002-01-21 n (-1)
Climbing robot for movement on smooth surfaces e.g. automatic cleaning
of horizontal / vertical surfaces has chassis with crawler drive suspended
and mounted turnable about vertical axis, to detect obstacles and prevent
lifting-off

10212964 2002-03-22 y (1)

Single Cell Operation Supporting Robot 2004015055 2002-08-08 y (1)
Underwater Cleaning Robot 2007105303 2006-03-14 y (1)
Position determination for medical devices with redundant position mea-
surement and weighting to prioritise measurements

1854425 2006-05-11 y (1)

Mobile Robot and Method of controlling the same 2007135736 2006-05-24 y (1)
Customizable Robotic System 2012061932 2011-11-14 y (1)
Positioning Apparatus for Biomedical Use 2012075571 2011-12-06 n (-1)
Apparatus and Method of Controlling Operation of Cleaner 2012086983 2011-12-19 n (-1)
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Table 9: Modular SQL Boolean term search approach for PATSTAT, defined through specific word construc-

tion for IFR application field CLEANING SR, augmented by IPC class codes. AST refers to table

containing abstracts, TTL refers to table containing titles, IPC refers to table containing IPC classes.

(
(
SUBSTRING(IPC.ipc_class_symbol,1,5)=’"B08B’ OR
SUBSTRING(IPC.ipc_class_symbol,1,5)=’"E01H’ OR
IPC.ipc_class_symbol LIKE ’%B60S 1%’ OR
IPC.ipc_class_symbol LIKE ’%B60S 3%’
)

OR (
TTL.appln_title LIKE ’%robot%’ AND (

TTL.appln_title LIKE ’%suction cup%’ OR
TTL.appln_title LIKE ’%safety analy%’ OR
TTL.appln_title LIKE ’%vertical wall%’ OR
TTL.appln_title LIKE ’%dry adhesive%’ OR
TTL.appln_title LIKE ’%gecko%’ OR
TTL.appln_title LIKE ’%wheel-based%’ OR (
TTL.appln_title LIKE ’%clean%’ AND NOT ( TTL.appln_title LIKE ’%house%’ OR

TTL.appln_title LIKE ’%domestic%’ OR
TTL.appln_title LIKE ’%pool%’

))
OR (

TTL.appln_title LIKE ’%climb%’ AND NOT TTL.appln_title LIKE ’%wheelchair%’
)

)
AND NOT ( TTL.appln_title LIKE ’%vacuum%’ OR

AST.appln_abstract LIKE ’%vacuum%’ OR
TTL.appln_title LIKE ’%wafer%’ OR
AST.appln_abstract LIKE ’%wafer%’ OR
TTL.appln_title LIKE ’%semiconductor%’ OR
AST.appln_abstract LIKE ’%semiconductor%’ OR
AST.appln_title LIKE ’%industr%’ OR
AST.appln_abstract LIKE ’%industr%’ OR
TTL.appln_title LIKE ’%milk%’ OR
AST.appln_abstract LIKE ’%milk%’ OR
TTL.appln_title LIKE ’%paint%’ OR
AST.appln_abstract LIKE ’%paint%’ OR
TTL.appln_title LIKE ’%weld%’ OR
AST.appln_abstract LIKE ’%weld%’ OR
TTL.appln_title LIKE ’%manufact%’ OR
AST.appln_abstract LIKE ’%manufact%’

)
)
OR (

AST.appln_abstract LIKE ’%robot%’ AND ( AST.appln_abstract LIKE ’%suction cup%’ OR
AST.appln_abstract LIKE ’%safety analy%’ OR
AST.appln_abstract LIKE ’%vertical wall%’ OR
AST.appln_abstract LIKE ’%dry adhesive%’ OR
AST.appln_abstract LIKE ’%gecko%’ OR
AST.appln_abstract LIKE ’%wheel-based%’ OR (
AST.appln_abstract LIKE ’%clean%’ AND NOT ( AST.appln_abstract LIKE ’%house%’ OR

AST.appln_abstract LIKE ’%domestic%’ OR
AST.appln_abstract LIKE ’%pool%’

))
OR (

AST.appln_abstract LIKE ’%climb%’ AND NOT AST.appln_abstract LIKE ’%wheelchair%’
)

)
AND NOT ( TTL.appln_title LIKE ’%vacuum%’ OR

AST.appln_abstract LIKE ’%vacuum%’ OR
TTL.appln_title LIKE ’%wafer%’ OR
AST.appln_abstract LIKE ’%wafer%’ OR
TTL.appln_title LIKE ’%semiconductor%’ OR
AST.appln_abstract LIKE ’%semiconductor%’ OR
AST.appln_title LIKE ’%industr%’ OR
AST.appln_abstract LIKE ’%industr%’ OR
TTL.appln_title LIKE ’%milk%’ OR
AST.appln_abstract LIKE ’%milk%’ OR
TTL.appln_title LIKE ’%paint%’ OR
AST.appln_abstract LIKE ’%paint%’ OR
TTL.appln_title LIKE ’%weld%’ OR
AST.appln_abstract LIKE ’%weld%’ OR
TTL.appln_title LIKE ’%manufact%’ OR
AST.appln_abstract LIKE ’%manufact%’

)
)
)
AND NOT SUBSTRING (IPC.ipc_class_symbol,1,4)=’"A47’



Table 10: List of the 1,206 variables used in the SVM for classification: Part 1/4 of the 726 unigrams.

1a arrang cardiac confirm
abl arrangement carri connect
abnormal arriv carriag connection
accelerat articulat carrier consequent
access assembl caus consist
accommodat assist cell constitut
accord associat center construct
accordanc attach centr construction
accurat attachabl central contact
achiev attachment chang contain
acquir auto characteris container
act automat characteristic continuous
action automatic characteriz control
activ autonomous charg controller
actual auxiliari chassi convention
actuat avoid check convert
adapt axe circuit conveyor
adapter axi claim coordinat
addition axial clamp correspond
adhesiv backlash clean cost
adjacent balanc cleaner coupl
adjust barrier climb cover
adjustabl base clip creat
adjustment basi close crop
advanc beam coat current
advantag bear code customizabl
agricultural behavior collect cut
aid bend collision damag
aim bicycl column data
air bipedal combin decision
algorithm blade combinat defin
allow block comfortabl degre
amount board command deliver
analysi bodi common deliveri
analyz bore communic deploy
angl bottom compact depress
angular box compar describ
animal brush compartment design
annular build complementari desir
apertur built complet detachabl
apparatus button component detect
appearanc cabl compos detection
appli calculat compris detector
applianc camera computer determin
applic capabl condition determinat
appropriat capillari configur deviat
architectur captur configurat devic
arm car confin diagnosi
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Table 11: List of the 1,206 variables used in the SVM for classification: Part 2/4 of the 726 unigrams.

differenc endoscopic form inspection
difficult energi frame instal
digital engag free installat
dimension enhanc freedom instruction
dimensional ensur frequenc instrument
dip enter front integrat
direct entir function interaction
direction environment gear interconnect
discharg environmental generat interfac
disclos equip glove interior
disconnect equipment grasp internal
dispens error grip invasiv
displac especial gripper invention
displaceabl essential groov involv
displacement etc ground item
display exampl guid jet
dispos exchang guidanc join
distal exhaust hand joint
distanc exist handl knee
dock expensiv har laser
door extend head latter
doubl extension heat lawn
draw external held layer
drill extract help leg
drive extraction hip length
driven extrem hold lever
dust facilitat holder lift
dynamic faciliti horizontal light
earth factor hose limb
easili fasten hous limit
edg featur human line
effect feedback hydraulic linear
effectiv field identifi link
effector fig imag liquid
efficienc figur implement load
elastic fill improv local
electric filter improvement locat
electronic finger includ lock
element fit incorporat locomotion
elongat fix increas log
embodiment flang independent longitudinal
emit flat individual loop
emitter flexibl industrial low
employ floor informat lower
employment flow inner machin
enabl fluid input magnetic
enclos forc insert main
endoscop foreign insertion maintain
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Table 12: List of the 1,206 variables used in the SVM for classification: Part 3/4 of the 726 unigrams.

make obtain portion referenc
manipulat oper position region
manner operabl possibl register
manoeuvr operat power relat
manual oppos pre relationship
manufactur optic precis relativ
map option predefin releas
marker orient predetermin reliabl
master orientat preferabl remot
material orthogonal preparat remov
mean outer press removal
measur output pressur replac
measurement overal prevent requir
mechanic pair procedur resolution
mechanism pallet process respect
medic panel processor respectiv
medicin parallel produc result
medium part product retain
memori partial production return
method particular program rigid
micro pass project ring
militari path propos risk
milk patient propulsion robot
mine pattern protectiv robotic
minimal payload provid rock
mobil perform proximal rod
modal performanc purpos roll
mode period quantiti roller
model peripheral rack rotari
modul permit radar rotat
monitor perpendicular radial rotatabl
motion photograph radio rough
motor pick rail run
mount piec rais safeti
movabl pipe rang sampl
move pivot rapid save
movement pivotabl reach scale
mow place reaction screen
mower plan real seal
mri plane realiti section
multi plant realiz sector
multipl plastic rear secur
navigat plate receiv select
network platform receiver send
normal play reciprocat sens
nozzl plural recognition sensor
object pneumatic record sent
obstacl port reduc separat
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Table 13: List of the 1,206 variables used in the SVM for classification: Part 4/4 of the 726 unigrams.

sequenc substantial transmission wire
seri substrat transmit wireless
serv subsystem transmitter workpiec
servo suction transport worn
set suitabl transportat wrist
shaft suppli transvers zone
shape support travel
shield surfac treat
ship surgeon treatment
short surgeri tube
signal surgic type
significant surround typic
simpl sutur ultrasonic
simulat switch underwater
simultaneous system uneven
singl take unit
site tank universal
situat target unload
size task upper
skin techniqu use
slave telepresenc user
sleev telescopic utiliz
smooth terminal vacuum
sourc terrain valu
sow test variabl
space therebi varieti
spatial therefrom vehicl
special thereof velociti
specifi thereon vertic
specific thereto vessel
speed third video
spiral tight view
spray tilt virtual
spring time visual
stabiliti tip volum
stabiliz tissu walk
stabl tool wall
stage tooth wast
station top water
stationari torqu weed
steer torso weight
step touch weld
stop toy wheel
storag track wherebi
store train wherein
structur trajectori wide
subject transfer winch
subsequent translat window
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Table 14: List of the 1,206 variables used in the SVM for classification: Part 1/2 of the 370 bigrams.

1,2 button,effector deviat,actual imag,process
1,compris capabl,control devic,17 implement,method
1,computer cardiac,procedur devic,compris includ,base
1,connect chassi,frame devic,control includ,main
1,disclos claim,includ devic,determin includ,pair
12,includ clean,horizontal devic,direct includ,step
12,provid clean,method devic,includ independent,claim
13,14 clean,operat devic,main industrial,robot
2,3 clean,robot devic,position informat,relat
2,compris cleaner,compris devic,provid informat,sensor
2,move cleaner,invention devic,robot informat,set
3,4 comfortabl,position devic,system inner,surfac
3,compris component,provid direction,drive input,button
3,connect compris,base displacement,sensor input,data
4,5 compris,bodi distanc,measur instrument,coupl
43,connect compris,main door,10 instrument,effector
5,arrang compris,plural drive,actuat instrument,mount
5,provid compris,robot drive,devic invasiv,cardiac
accord,invention compris,robotic drive,forc invention,compris
actual,position computer,program drive,ground invention,disclos
actuat,control connect,clamp drive,mechanism invention,propos
addition,equipment control,box drive,system invention,provid
adjust,position control,cabl drive,unit invention,relat
adjustabl,surgeon control,devic drive,wheel joint,provid
allow,surgeon control,input e,g laser,emitter
angl,adjust control,joint effector,control leg,joint
apparatus,compris control,manipulat effector,correspond longitudinal,direction
apparatus,method control,method effector,handl machin,tool
apparatus,perform control,movement effector,manipulat main,bodi
arm,coupl control,operat effector,move main,controller
arm,includ control,panel effector,movement manipulat,arm
arm,instrument control,provid effector,perform manipulat,hold
arm,join control,resolution element,5 master,handl
assembl,method control,robot endoscopic,imag mean,14
automatic,clean control,robotic error,signal mean,2
automatic,control control,system factor,adjustabl mean,detect
automatic,robot control,unit front,bodi mean,receiv
autonomous,move controller,handl front,rear measur,devic
autonomous,robot correspond,movement front,robot mechanism,rotat
axe,rotat coupl,pair guid,mean method,apparatus
balanc,control degre,freedom hand,surgeon method,autonomous
base,informat deliveri,system handl,controller method,clean
base,station depress,surgeon handl,move method,control
bodi,2 detect,obstacl handl,scale method,invention
bodi,robot detect,position har,1 method,provid
bodi,surgic detection,mean hold,sutur method,system
button,allow determin,position horizontal,vertic method,thereof
button,depress determin,spatial imag,data method,use
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Table 15: List of the 1,206 variables used in the SVM for classification: Part 2/2 of the 370 bigrams.

minimal,invasiv position,coordinat robot,pick system,includ
mobil,robot position,determinat robot,position system,method
mobil,robotic position,devic robot,realiz system,mobil
motion,control position,handl robot,robot system,perform
motion,controller position,informat robot,s system,robot
motor,drive position,robot robot,system system,use
motor,vehicl position,robotic robotic,arm thereof,invention
mount,chassi position,system robotic,control time,period
mount,robot power,sourc robotic,devic tissu,robotic
move,button predetermin,position robotic,surgeri travel,perform
move,comfortabl predetermin,time robotic,system tube,apparatus
move,devic procedur,system rotari,brush typic,movement
move,effector produc,correspond rotat,axe uneven,terrain
move,floor provid,mean rotat,head unit,arrang
move,robot provid,platform rotat,motor unit,compris
move,surgeon provid,robot rotat,movement unit,control
movement,effector provid,surgic rotat,shaft unit,drive
movement,handl purpos,robot scale,effector unit,generat
movement,movement real,time scale,factor unit,provid
movement,perform relat,automatic seal,access upper,lower
movement,robotic relat,method send,imag use,robotic
movement,typic relat,mobil sensor,mount use,surgic
navigat,system relat,robot servo,motor user,operat
object,provid remot,control signal,receiv vacuum,clean
operat,accord remot,view signal,robot vacuum,cleaner
operat,clamp resolution,effector signal,transmitter vehicl,bodi
operat,devic robot,1 slave,robot vertic,axi
operat,operat robot,10 smooth,surfac video,signal
operat,perform robot,arm sow,weed walk,robot
operat,power robot,arrang surfac,clean water,discharg
operat,rang robot,automatic surgeon,adjust wheel,instal
operat,remot robot,bodi surgeon,control wire,wireless
operat,robot robot,capabl surgeon,input x,y
operat,unit robot,clean surgeon,produc y,z
output,signal robot,cleaner surgeon,scale
overal,structur robot,communic surgeri,surgic
pair,master robot,compris surgic,instrument
pair,robotic robot,control surgic,operat
pair,surgic robot,includ surgic,procedur
path,robot robot,invention surgic,robot
patient,s robot,main surgic,site
patient,treat robot,method surgic,system
perform,clean robot,mobil surgic,tool
perform,hand robot,motion sutur,tissu
perform,minimal robot,move system,autonomous
perform,surgic robot,movement system,compris
position,base robot,mower system,control
position,compris robot,operat system,devic

28



Table 16: List of the 1,206 variables used in the SVM for classification: All 110 trigrams.

adjust,position,handl invention,relat,automatic surgeon,produc,correspond
adjustabl,surgeon,control invention,relat,method surgeon,scale,factor
allow,surgeon,adjust invention,relat,mobil surgic,instrument,coupl
apparatus,perform,minimal manipulat,hold,sutur surgic,instrument,mount
arm,coupl,pair master,handl,controller surgic,robot,compris
arm,instrument,effector method,invention,relat surgic,robot,system
button,allow,surgeon method,thereof,invention sutur,tissu,robotic
button,depress,surgeon minimal,invasiv,cardiac system,control,movement
button,effector,move mobil,robot,invention system,includ,pair
cardiac,procedur,system mobil,robotic,devic system,perform,minimal
clean,horizontal,vertic mount,robot,arm thereof,invention,disclos
clean,robot,1 move,button,depress tissu,robotic,arm
cleaner,invention,relat move,comfortabl,position typic,movement,perform
compris,main,bodi move,effector,handl x,y,z
control,input,button move,surgeon,produc
control,method,thereof movement,effector,control
control,resolution,effector movement,effector,movement
controller,handl,move movement,handl,scale
correspond,movement,effector movement,movement,effector
correspond,movement,typic movement,perform,hand
coupl,pair,master movement,typic,movement
coupl,pair,robotic pair,master,handl
depress,surgeon,input pair,robotic,arm
devic,main,controller pair,surgic,instrument
devic,robot,arm perform,clean,operat
effector,control,input perform,hand,surgeon
effector,correspond,movement perform,minimal,invasiv
effector,handl,move position,handl,move
effector,manipulat,hold position,robot,arm
effector,move,button procedur,system,includ
effector,movement,handl produc,correspond,movement
effector,movement,movement relat,automatic,robot
factor,adjustabl,surgeon resolution,effector,movement
front,robot,arm robot,arm,includ
hand,surgeon,scale robot,cleaner,compris
handl,controller,handl robot,cleaner,invention
handl,move,comfortabl robot,control,method
handl,move,effector robot,control,system
handl,move,surgeon robot,invention,relat
handl,scale,effector robot,system,method
hold,sutur,tissu robotic,arm,coupl
includ,pair,surgic robotic,arm,instrument
independent,claim,includ robotic,devic,compris
input,button,allow scale,effector,correspond
input,button,effector scale,factor,adjustabl
instrument,coupl,pair surgeon,adjust,position
instrument,effector,manipulat surgeon,control,resolution
invasiv,cardiac,procedur surgeon,input,button
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Figure 7: The following python scripts were used to implement the support vector machine, load the prepro-

cessed text elements, and select relevant attributes for classification.



Figure 8: The following python scripts were used to normalize the data and train the support vector machine

(learning steps 1 to 3).
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