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Stochastic technical analysis for decision making on the
financial market

(September 10, 2014)

Markus Höchstötter1,+ , Mher Safarian1

Abstract

We apply the well-known CUSUM and the Girshick-Rubin algorithm as trading

strategies involving only mutually exclusive long positions in cash and the DAX

at Frankfurt mid-day auction prices. We select optimal pairs of fixed thresholds

for up- and down- movements from a pre-defined two-dimensional grid, hence,

admitting asymmetric intervals. We show that under three different scenarios for

transaction costs, the CUSUM technique not only outperforms the passive invest-

ment in the DAX but also the alternative Girshick-Rubin algorithm.

Keywords: CUSUM, Girshick-Rubin, trading algorithm, DAX

1. Introduction

One of the most critical questions in asset management and investing is the de-

tection of changes in the current regime. The theoretical terminology refers to this

as change-point detection or break-point analysis. In an economic context, mod-
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els often involve a multitude of parameters, the stability of which over time has

been put into question at least since Isaac and Griffin (1989). Many others such

as, for example, Balding et al. (2008), Hamilton and Susmel (1994), Schaller and

Van Norden (1997), Bai and Perron (1998), Hansen (2000), Dias and Embrechts

(2002), Western and Kleykamp (2004) followed suit. These approaches detect

change points by looking into the rearview mirror, that is, they analyze histori-

cal time series and determine the most probable scenario concerning a change in

value, or multiple changes of a particular parameter of a more or less complex

model, in the past. This, however, is of limited to no value to an investor or trader

who has to receive signals immediately if a change appears likely.

Interestingly, a suitable approach has been provided by some technique de-

veloped for quality control in manufacturing, i.e. control chart techniques first

developed such as Shewhart (1932). The general idea is to observe some time

series until a predefined threshold is trespassed. Page (1954a) and Page (1954b)

coined the term CUSUM as short for cumulative-sum where the actual value of

a process, for example, a random walk is compared to some prior extreme value

such as an all-time low or high, respectively. If the difference between actual

and reference value is greater than the threshold, a signal is delivered. The initial

approach was augmented by the moving average control chart by Roberts (2000).

The CUSUM is equivalent to the filter trading rule introduced by Alexander

(1961). Initial results of this rule are given, for example, by Alexander (1961),

Fama and Blume (1966), or Dryden (1969) who showed that, after consideration

of trading costs, the filter method cannot outperform the traditional buy-and-hold

strategy. Moreover, a shortcoming of the original rule was detected in that, under

certain circumstances, the trading rule could result in unbounded losses.
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In financial applications, methods of quickest detection of a change-point are

of interest that are “free” of a distribution of a random sequence, i.e. nonpara-

metric methods.1 The biggest problem with control techniques is the proper de-

termination of the threshold which my actually vary over time. Solutions in that

context are provided by, for example, Verdier et al. (2008). It was shown that

when the change-point is a random variable with known distribution, then the op-

timal method is to observe an à posteriori probability of a change-point until it

reaches some threshold value which may be analytically calculated. This method,

however, cannot be applied to problems arising in practice since it is almost al-

ways impossible to obtain any à priori information on the distribution of the time

of occurrence of a change-point itself as well as on the distribution of a random

sequence before and after the change. This, for example, makes the approach by

Luo et al. (2009) who suggest variable sampling intervals under known distribu-

tions inapplicable, in our context. The most flexible approach so far has been

suggested by Jeske et al. (2009) with, however, the still slightly unrealistic as-

sumption of independent observations. A good overview of the topic is given by

Wald (2013) and Shiryaev (2007).

2. Algorithms

Hereafter, the scheme of observations we deal with is as follows. Let (Ω,F , P)

be a probability space on which there is defined a random sequence x = (xi)i≥0

with

xi = a + ξi I(i < i∗) + (c + ηi) I(i ≥ i∗)

1It turns out that it is possible to give “nonparametric” versions to some popular parametric

methods.
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where ξ = (ξi)i≥0 and η = (ηi)i≥0 are random sequences such that E(ξi) = E(ηi) = 0

and a and c are constants with a(a + c) < 0. The index value i∗ indicates a change-

point.

The objective is to minimize the average delay until the detection of a true

change-point while, at the same time, keeping the number of false alarms down.

Among the algorithms we will present, there is no universal one for the quickest

detection of a change-point in a variety of settings. Each one outperforms in its

“domain”.

Let

• initial value of time interval: T0

• final value of time interval: T1

• tick times of the asset price: (τ j)N
j=0

• best bid price of the asset at tick: (S bid
τ j

)N
j=0

• best ask price of the asset at tick: (S ask
τ j

)N
j=0

• parameter of partition of time interval: Λ

• interval for smoothing: M

• coefficient of smoothing: α, 0 < α < 1

• threshold value of the algorithm: h

Let L = [(T1 − T0)/Λ].2 We define values of best bid and best ask asset prices

at the points of (equidistant) partition tk = kΛ, (0 ≤ k ≤ L) of the time interval

2Here, [a] stands for an integer part of a.
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[T0,T1] as values S bid
τm

and S ask
τm

, respectively, at the tick times:

τm = max
0≤ j≤N

{τ j : τ j ≤ tk}.

In the following, by S k := S bid
k − S ask

k , we will denote the mid-day auction prices

with zero spread and the assumption of unlimited liquidity, instead. Also, we

define

ξ j = ln S j − ln S j−1, 1 ≤ j ≤ L.

2.1. CUSUM

Let k0 be the last point in time that the signal (of a true change-point) was detected(k0 =

T0, at the beginning). Then, define recurrently

R(1)
k0

= R(2)
k0

= 0

R(1)
k = (R(1)

k−1 + ξk)+

R(2)
k = (−R(2)

k−1 + ξk)−, k0 < k ≤ L

where we have used the convention (a)+ = max{a, 0} and (a)− = −min{a, 0}. If

R(1) ≥ h, for the first time since the last signal and for some pre-defined threshold

h > 0, then, the algorithm indicates that the random sequence under observation

shows an up-trend and, thus, sends a “buy” signal. If, on the other hand, R(2) ≥ h,

then the random sequence shows a down-trend and the algorithm sends a “sell”

signal.

2.2. Girshick-Rubin

Let k0 be the last point in time that a signal was detected. Define

R(1)
k0

= R(2)
k0

= 0

R(1)
k = 1/(k + 1) exp(ξk)(1 + kR(1)

k−1)

R(2)
k = 1/(k + 1) exp(−ξk)(1 + kR(2)

k−1), k0 < k ≤ L
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If R(1) ≥ h, for some pre-defined threshold h > 0, then, there is a signal to buy

the asset. On the other hand, if R(2) ≥ h, then there is a signal to sell the asset.

2.3. Concluding remarks

At this point, it ought to be mentioned that the threshold value of the algorithm

h as far as the other parameters Λ, α, and c should be determined by trial-and-

error methods or grid search. For simplicity, we only assume h to be variable

and keep the other parameters fixed (α = −1, c = +2, and Λ = 1).3 To provide

for greater flexibility, we allow h for up-movements to be different from h for

down-movements.

3. Data

We obtained the daily Frankfurt mid-day auction prices (Kassakurse of the

DAX index (WKN 846900) from the Karlsruher Kapitalmarktdatenbank. Our

sample covers the period between January 1, 1990 and March 31, 2014, yielding

over 6100 observations. Thus, it contains observations from a selection of differ-

ent crises such as, for example, the Japanese crisis in 1997, the Rubel crisis in

1998, the dot-com bubble in 2000 and, of course, the latest crisis beginning 2007.

Figure 1 displays a chart of the DAX level in that period. The currency is euros

implying a backward conversion of the prices in deutsche mark prior to January

1, 2002. Starting at a level of EUR 1814, the DAX gained EUR 7741 over the

sample period resulting in a level of EUR 9556 at the end of March, 2014. This is

roughly 5.3 times the level at the beginning of the sample period.

3As of yet, we do not (!) have a preferred algorithm for the determination of these parameters.
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—

Figure 1 here

—

In Figure 2, we display the daily log-returns of the DAX over the sample pe-

riod. The minimum is -0.0987 and the maximum 0.1080 with a mean of nearly

zero. The standard deviation is 0.0146 while skewness and kurtosis are -0.1244

and 7.8817, respectively. This hints at a strongly leptocurtic and asymmetric dis-

tribution of the log-returns which is supported by the very high Jarque-Bera test

statistic of 6098. The 0.05- and 0.95-quantiles are equal to -0.0233 and 0.02183,

respectively. A kernel density plot is given by Figure 3.

—

Figure 2 here

—

—

Figure 3 here

—
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4. Set-up and Results

Our approach is as follows. We start with an initial cash position (long) of

1’000 euros at the beginning, on January 1, 1990. At the end, on March 31, 2014,

we dissolve any investment at current value if a long position is taken; otherwise,

we simply consider the cash position. In between, we either invest the entire

current amount at the current price of the DAX (if a buy-signal occurs) and hold

it until the next sell-signal or sell everything and hold cash only (if a sell-signal

occurs). Thus, portfolio weights for cash and asset are mutually exclusively either

zero or one. The positions are held, respectively, until the first signal of opposite

sign is observed. Hence, consecutive signals of same sign do not lead to any

action.

Further, we assume three scenarios. In the first scenario, there are no trans-

action costs. So, we alter positions at zero expense. Under the second scenario,

transactions are assumed to be EUR 10 for both sell and buy. The third scenario

has transaction fees of EUR 30 for both sell and buy. Under the latter two scenar-

ios, we assume fixed transaction costs independent of size.4

Since we are unaware of an analytical optimal solution for threshold param-

eter h when dealing with these DAX log-returns, we resort to grids for both al-

gorithms, i.e., CUSUM in subsection 2.1 as well as Girshick-Rubin in subsec-

4We admit that this may be somewhat unrealistic especially for the earlier years of the sample

period. On average, the EUR 10 fee of the second scenario most likely represents reality most

adequately given the trading fees universe of German traders within the last few years. Also, we

assume unlimited liquidity on both the sell and buy side to hold prices stable. We concede that

this might leave room for improvement. However, we do not think that this will impair the overall

picture obtained from our analysis.
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tion 2.2. To be precise, we use two different grids. The coarser one covers the

domain h ∈ [0.05, 0.50] with step size 0.05. The finer one covers the domain

h ∈ [0.01, 0.10] with step size 0.01. To provide greater flexibility, as mentioned

before, we allow the bounds to be asymmetrical, that is, the threshold h for up-

movements (which we denote h1, here) can be different from the threshold for

down-movements (which we denote h2, here).5 As computer software, we used

Matlab. —

Figure 4 here

—

First, we discuss the results for the coarser grid between 0.05 and 0.50 with step

size 0.05. In Figure 4, sorted by scenario, we display the surface of the end of the

period values of the CUSUM strategy for the different threshold values h1 and h2.

By looking at scenario one in Figure 4a, it becomes obvious that the final pay-off

increases for smaller thresholds. As can be see from Table 1, the maximum over

this grid is roughly 2.1 million euros which is attained for the symmetric case

h1 = h2 = 0.05. While still in the corner of the lowest threshold values, the intro-

duction of fees in scenarios two and three definitely results in a reduction of the

final pay-off, as can be seen in Figure 4a and Figure 4a, respectively. The optimal

pay-off under scenario one is ca. 1,2 million euros and under scenario three, it

equals 27,899.19 euros. From Table 1, we can see that for the highest fee, optimal

choice is asymmetrical with h1 = 0.05 and h2 = 0.10. —

5One should keep in mind that symmetrical bounds translate into asymmetrical bounds for

actual DAX level changes since we focus on log-returns.
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Figure 5 here

—

For the same grid, the final pay-offs of the Girshick-Rubin strategies are displayed

in Figure 5. While pay-offs are generally lower than those from CUSUM, it also

seems as if there is no tendency for symmetry and lower values of the thresholds

h1 and h2 as was the case before. For the highest fees, as can be seen in Figure

5c, the strategies with large threshold values clearly dominate the lower values.

In detail, the respective optimal final pay-offs in each scenario are 7,331.32 euros

and 2,951.79 euros, respectively, as also reported in Table 1.

—

Figure 6 here

—

From Figure 4, we realize that we have to analyze the region for very small thresh-

olds, for the CUSUM strategy. For this reason, we compute final pay-offs over the

fine grid between 0.01 and 0.10 with step size 0.01. The resulting pay-off sur-

faces sorted by scenario are presented in Figure 6. In Figure 6a, we see that under

the first scenario, the optimal strategy is for the smallest values of the threshold

in that grid which supports our intuition from the previous plots. In fact, from

Table 1, the optimal strategy yields a pay-off of over 133 trillion (!) euros which

is definitely owed to the unrealistic setting of no transactions costs. The optimal

threshold values are symmetrically located at h1 = h2 = 0.01. Under scenario two,
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as shown in Figure 6b, the picture is similar, however with a smaller final pay-off

of 54 trillion (!) euros due to 10 euros transaction fees. And finally, in Figure 6c,

we see the results for the third scenario. Here, due to the higher transaction fees of

30 euros, the optimal final pay-off of 80,957.02 euros has been strongly deflated

compared to the previous two settings. The optimal threshold is asymmetric with

h1 = 0.03 and h2 = 0.09, respectively, and clearly leaning away from the lowest

corner.

—

Figure 7 here

—

The results of the Girshick-Rubin algorithm are presented in Figure 7. In Figure

7a, we see that the final pay-off under scenario one peaks near the lowest threshold

values. To be precise, the optimal pay-off of 30,580.40 euros is achieved for

h1 = 0.01 and h2 = 0.02, respectively. With transaction fees of 10 euros, the

prospects are generally dim. In the best case, for high threshold values near 0.1

there are final pay-offs of roughly 500 euros which represents a loss given that we

started with 1,000 euros. In any other area of the grid, performing the algorithm

leads to ruin. So, here, it is generally better to keep the initial cash position of

1,000 euros which is the strategy listed in Table 1. For transactions fees of 30

euros, things are even worse. Any combinations of threshold values leads to ruin.

So again, we should rather keep the 1,000 euros for the entire period.

From Figure 5b, we might come to the conclusion that an optimal set of thresh-

olds for the Girshick-Rubin algorithm can be found somewhere between 0.20 and
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0.40. To validate this hypothesis, we concentrate another grid on this range with

step size 0.01. The optimal final pay-offs under each scenario are listed at the bot-

tom in Table 1. When transaction fees are equal to 20 euros, then the best strategy,

so far, has been detected to lie inside of this grid at h1 = 0.20, h2 = 0.39 which is

well inside the coarse grid between 0.05 and 0.50 and only slightly away from a

grid point there. This gives rise to the notion that some optimum might be located

in this areas that could be verified by an even finer grid.

5. Summary

We have presented two different trading algorithms based on the well-known

CUSUM technique as well as the Girshick-Rubin algorithm, respectively. We se-

lected the optimal pairs of possibly asymmetric thresholds from a two-dimensional

grid. While we admit that we make some naïve assumptions concerning unlim-

ited liquidity at the Frankfurt mid-day auction, we provide for some realistic con-

straints by introducing several constraints in the form of scenarios for trading fees.

We witness the problem of unboundedness in case of the CUSUM algorithm.

Overall, we can say that the CUSUM algorithm yields superior results. Gen-

erally, its optimal thresholds are symmetric and located in the lower region of the

grid. The alternative Girshick-Rubin strategy still outperformed the passive long

investment in the DAX. However, it is always dominated by the CUSUM strategy.

Moreover, in a few scenarios, the Girshick-Rubin algorithm led to ruin.
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Figure 1: DAX levels.
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Figure 4: Comparison of CUSUM strategies for different fees (h1, h2 ∈ {0.05, 0.10, . . . , 0.50}).



0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5

0

0.5

1

1.5

2

x 104

h1

Girshick−Rubin (fee = 0)

h2

Euros

(a)

(b)

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5
0

1000

2000

3000

h1

Girshick−Rubin (fee = 30)

h2

Euros

(c)

Figure 5: Comparison of Girshick-Rubin strategies for different fees (h1, h2 ∈

{0.05, 0.10, . . . , 0.50}).



0
0.02

0.04
0.06

0.08
0.1

0
0.02

0.04
0.06

0.08
0.1

0

2

4

6

8

10

12

14

x 1013

h1

CUSUM (fee = 0)

h2

Euros

(a)

0
0.02

0.04
0.06

0.08
0.1

0
0.02

0.04
0.06

0.08
0.1

0

1

2

3

4

5

6

x 1013

h1

CUSUM (fee = 10)

h2

Euros

(b)

0
0.02

0.04
0.06

0.08
0.1

0
0.02

0.04
0.06

0.08
0.1

0

2

4

6

8

10

x 104

h1

CUSUM (fee = 30)

h2

Euros

(c)

Figure 6: Comparison of CUSUM strategies for different fees (h1, h2 ∈ {0.01, 0.02, . . . , 0.10}).
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Grid {0.01, 0.02, . . . , 0.10}

Fee Strategy Pay-off h1 h2

0
CUSUM 133295220631634.11 0.01 0.01

G-R 30508.40 0.01 0.02

10
CUSUM 54257469792643.15 0.01 0.01

G-R 1000.001

30
CUSUM 80957.02 0.03 0.09

G-R 1000.001

Grid {0.05, 0.10, . . . , 0.50}

Fee Strategy Pay-off h1 h2

0
CUSUM 2099809.36 0.05 0.05

G-R 15866.21 0.05 0.15

10
CUSUM 1204424.63 0.10 0.10

G-R 7331.32 0.05 0.20

30
CUSUM 27899.19 0.05 0.10

G-R 2951.79 0.20 0.50

Grid {0.20, 0.21, . . . , 0.40}

Fee Strategy Pay-off h1 h2

0 G-R 12857.97 0.20 0.39

10 G-R 9703.03 0.20 0.39

30 G-R 2133.79 0.40 0.40

Table 1: Final optimal pay-off per strategy and grid.1 The strategy leads to loss or ruin for any pair

of threshold values.
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