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Abstract

In this paper we study a hedging problem for European options taking into account

the presence of transaction costs. In incomplete markets, i.e. markets without classical

restriction, there exists a unique martingale measure. Our approach is based on the

Föllmer-Schweizer-Sondermann concept of risk minimizing. In discret time Markov

market model we construct a risk minimizing strategy by backwards iteration. The

strategy gives a closed-form formula. A continuous time market model using martingale

price process shows the existence of a risk minimizing hedging strategy.

Key words: hedging of options, incomplete markets, transaction costs, risk minimization,

mean-self strategies

1 Discrete-Time Model

In this section we formulate terminology for the basic problem of taking into account trans-

action costs, studied in this paper. The idea is based on the approach taken by the Föllmer-

Schweizer-Sondermann concept of risk minimization. A detailed description of this concept

in discrete time and in the absence of transaction costs is found in the one of the best Mono-

graphs for Financial Stochastic by Föllmer/Schied [4]. An introduction to the problem of

transaction costs in a complete markets is provided in the monography of Kabanov/Safarian

[6].

∗E-mail: mher.safarian@kit.edu, Schlossbezirk 12, 76131 Karlsruhe
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1.1 Assumptions and de�nitions

A discrete-time model of �nancial market is built on a �nite probability space (Ω, F =

(Ft), P ) equipped with a �ltration an increasing sequence of σ - algebras included in F

F0 = {∅,Ω}, F1 ⊆ F2 ⊆ . . . ⊆ FN = F,N <∞, where |Ω| <∞.

De�nition 1

a) A pair ϕ = (ξ, η) with random process ξ = (ξt), t = 1, . . . , N , ξ0 = 0 and random process

η = (ηt), t = 0, 1, . . . , N is a trading strategy, if it satis�es the following properties:

ξt is Ft−1- measurable (a predictable process) for t = 1, . . . , N and

ηt is Ft- measurable for t = 0, 1, 2 . . . , N.

The process ξt is the number of units of stock held at time t and ηt is the number of riskless

units held at time t. The securities and the risk-free assets form the so-called portfolio.

We assume the interest rate r is constant over the entire period. So, we set r = 0 in order

to simplify the notation.

b) The value process Vt(ϕ) de�ned by

Vt(ϕ) = ξt+1St + ηt for t = 0, 1, . . . , N

then represents the value of the portfolio Vt(ϕ) held at time k. The process St with ES
2
t <∞

is called price process and represents the discounted value of some risky asset.

c) The cost process Ct(ϕ) of a strategy ϕ = (ξ, η) is given by the equation

Ct(ϕ) = Vt(ϕ)−
t∑

j=1

ξt∆Sj for t = 0, 1, . . . , N,

where ∆Sj = Sj − Sj−1 and C0 = V0. Ct(ϕ) describes the cumulative costs up to time k

incurred by using the trading strategy ϕ = (ξ, η).

The cost process including transaction costs is then de�ned by the following formula:

Ct(ϕ) = Vt(ϕ)−
t∑

j=1

ξt∆Sj + TC
(
Sj,
∣∣∣∆ξj∣∣∣) for t = 0, 1, . . . , N. (1)
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d)The process TC is called transaction cost process if

TC
(
Sj,
∣∣∣∆ξj∣∣∣) = k

t∑
j=1

Sj

∣∣ξj − ξj−1∣∣,
where k is the coe�cient of transaction costs, k is constant. The process TC

(
Sj,
∣∣∣∆ξj∣∣∣)

represents the cumulstive transaction costs up to time t.

In realistic situations the coe�cient of transaction costs k may depend on the volume of sales.

Our method could easily be generalized to cover such transaction costs. For the purpouse

of readability we write Tt instead of TC.

De�nition 2

a) A trading strategy ϕ = (ξ, η) is called mean-self-�nancing if its cost process Ct(ϕ) is a

square-integrable martingale.

b) The risk process rt(ϕ) of a trading strategy is de�ned by rt(ϕ) = E

{(
Ct+1(ϕ)−Ct(ϕ)

)2∣∣∣Ft

}
(see[2], [8] p.18), for t = 0, 1, 2, . . . , N − 1.

c) Let H be a contingent claim. A trading strategy ϕ = (ξ, η) is called H - admissible if

VN(ϕ) = H almost surely (a.s.), where N is the maturity time.

d) A trading strategy

ϕ =
((
ξ∗1 , η

∗
1

)
,
(
ξ∗2 , η

∗
2

)
, . . . ,

(
ξ∗k, η

∗
k

)
, . . . ,

(
ξ∗N , η

∗
N

))
is called risk-minimizing if for any trading time t = 0, 1, . . . , N and for any admissible strat-

egy

ϕk =
((
ξ∗1 , η

∗
1

)
,
(
ξ∗2 , η

∗
2

)
, . . . ,

(
ξ∗k, η

)
,
(
ξ, η∗k+1

)
, . . . ,

(
ξ∗N , η

∗
N

))
(i.e. VN

(
ϕk
)

= VN
(
ϕ
)
) the folowing inequality is valid:

rt
(
ϕk
)
− rt(ϕ) ≥ 0 for t = 0, 1, . . . , N.

The goal is to �nd a strategy that is H-admissible, risk-minimizing and mean-self-�nancing,

including transaction costs incurred after conversion of the portfolio.

Remark 1

a) The risk-mimimizing strategies without transactions costs have been constructed in

Föllmer/Schweizer [1], Föllmer/Sondermann [2], Schweizer [8].
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b) In [2], [3], [7] the risk at time t is de�ned as follows:

Rt(ϕ) = E

{(
CN(ϕ)− Ct(ϕ)

)2∣∣∣Ft

}
,

where N is maturity time and t = 0, 1, . . . , N.

It is easily seen that the above formulated problem is similar to the following problem in

discrete time (see also the remark in M. Schweizer [8] pp. 25-26):

Rt(ϕ) = E

((
CN(ϕ)− Ct+1(ϕ) + Ct+1(ϕ)− Ct(ϕ)

)2∣∣∣Ft

)
=

= E
(
Rt+1(ϕ)

∣∣∣Ft

)
+ rt(ϕ),

where rt(ϕ) = E
{(
Ct+1 − Ct

)2∣∣Ft

}
with Rt(ϕ) ≥ rt(ϕ) for any t = (0, 1, 2, . . . , N).

The theorem of existence of a risk minimizing hedging strategy for a �nite probability space

can be stated as:

Theorem 1

Let ∆Sn = ρnSn−1(ρk > −1) be a price process and ρn be a sequence of independent identi-

cally distributed random variables, such that ρn ∈
(
α1, . . . , αm

)
with probability

(
p1, . . . , pm

)
und Eρk = 0, Eρ2n = σ2.

The H-admissible local risk-minimizing strategy under transaction costs is given by explicit

formulas:

ξn = Θ∗n = Θ∗n
(
Sn−1

)
= arg min

o≤i≤m+1
rn
(
Z∗i
)

= JN−n
(
Sn−1

)
, (2)

where Z∗i = Z∗i
(
Sn−1

)
= arg min

Zi−1<Z≤Zi

rn
(
Z
)

and ηn = Vn(ϕ)− ξnSn, n = {1, . . . , N} with

Vn−1 = E
(
Vn
∣∣Fn−1

)
+ kE

(
ξn+1Snχn

(
JN−n(Sn−1)

)∣∣Fn−1
)
−

−kJN−n
(
Sn−1

)
E
{
Snχn

(
JN−n(Sn−1)

)∣∣Fn−1

}
,

(3)

n ∈ {0, 1, . . . , N}, N being the maturity time.

The risk function is given by

rt
(
ξn
)

= E

{(
Vn − Vn−1 − ξn∆Sn + kSn

∣∣ξn+1 − ξn
∣∣)2∣∣Fn−1

}
. (4)

.
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Proof. The proof of Theorem 1 is done step by step, going backwards from time N. We apply

the argument of the preceding section step by step to retroactively determine our trading

strategy. At time k, we would choose ξk+1 and ϕk such that the conditional risk

E
(

(Cn − Cn−1)
2
∣∣Fn−1

)
= E

{(
Vn − Vn−1 − ξn∆Sn + kSn

∣∣ξn+1 − ξn
∣∣)2∣∣Fn−1

}
is minimized and the cost process of a strategy ϕ = (ξ, η) including transaction costs

Ct(ϕ) = Vt(ϕ)−
t∑

j=1

ξj∆Sj + k

t∑
j=1

Sj

∣∣ξj − ξj−1∣∣
is a martingale.

For the proof of the theorem we consider the following:

Step 1

We will assume without impairing the generality that σ2 = 1.

Let n = N and ρn ∈
(
α1, . . . , αm

)
with probabilities

(
p1, . . . , pm

)
.

According to de�nition 1a), we set ξN+1 = ξN . This follows directly from the property that

ξt is a predictable process.

We admit only strategies such that each Vn is square-integrable and such that the con-

tingent claim H is produced in the end, i.e. VN = H.

If one chooses the portfolio so that

VN−1 = E
(
H(SN)

∣∣FN−1
)

=
m∑
i=1

H
(
(1 + αi)SN−1

)
pi = H1(SN−1),

then the cost process Ct is a martingale.

For the next steps, we agree again to use simpli�ed notations:

H0(U) := H(U), H1(U) :=
m∑
i=1

H0

(
(1 + αi)U

)
pi.

In this notation, we need to solve the following minimization problem:

E

{(
H0(SN)−H1(SN−1)− ξN∆SN

)2∣∣∣FN−1

}
−→ min.
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The risk is minimized by choosing

ξN =

E

{(
H0(SN)−H1(SN−1)

)
(∆SN)

∣∣∣FN−1

}
E
{

(∆SN)2
∣∣FN−1

} =

=

E

{(
H0(SN)−H1(SN−1)

)
ρN

∣∣∣FN−1

}
SN−1

=

=

∑m
i=1

(
H0

(
(1 + αi)SN

)
−H1(SN−1)

)
αipi

SN−1
= J0(SN−1), i.e.

(5)

J0(U) =
1

U

m∑
i=1

αi

(
H0(βiU)−H1(U)

)
pi or ξN = J0(SN−1).

Remark 2

We assume that there are no transaction costs at the time N the option is exercised. This

assumption is founded in economics, because at the time of exercise, no reallocation of the

portfolio takes place.

Step 2

Let n = N − 1. For the risk function taking into account transaction costs, the following

minimization problem is to solve:

E

{(
VN−1 − VN−2 − ξN−1∆SN−1 + k

∣∣ξN − ξN−1∣∣SN−1

)2∣∣FN−2

}
−→ min. (6)

The portfolio will be selected in the same way as in the step 1 so that the cost process is a

martingale, i.e.

VN−2 = E
(
VN−1

∣∣FN−2

)
+ kE

(∣∣ξN − ξN−1∣∣SN−1
∣∣FN−2

)
=

= E
(
VN−1

∣∣FN−2

)
+ kE

{(
ξN − ξN−1

)
SN−1χ

+
N−1
∣∣FN−2

}
+

+ kE
{(
ξN−1 − ξN

)
SN−1χ

−
N−1
∣∣FN−2

}
= E

(
VN−1

∣∣FN−2

)
+

+ kE
(
ξNSN−1χ

+
N−1
∣∣FN−2

)
− kξN−1E

(
SN−1χ

+
N−1
∣∣FN−2

)
+

+ kξN−1E
(
SN−1χ

−
N−1
∣∣FN−2

)
− kE

(
ξNSN−1χ

−
N−1
∣∣FN−2

)
=

= E
(
VN−1

∣∣FN−2

)
+ kE

{
ξNSN−1

(
χ+
N−1 − χ

−
N−1
)∣∣FN−2

}
−

− kξN−1E
{
SN−1

(
χ+
N−1 − χ

−
N−1)

∣∣FN−2

}
,
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where χ+
N−1 = χ

(
ξN ≥ ξN−1

)
and χ−N−1 = χ

(
ξN < ξN−1

)
or

χN

(
Z
)

= χ
(
ξN ≥ Z

)
− χ

(
ξN ≤ Z

)
.

It follows that

VN−2 = E
(
VN−1

∣∣FN−2

)
+ kE

{
ξNSN−1χN

(
ξN−1

)∣∣FN−2

}
−

− kξN−1E
{
SN−1χN

(
ξN−1

)∣∣FN−2

}
. (7)

Taking that into account, we have now to solve this minimizing problem:

E

{(
CN−1 − CN−2

)2∣∣FN−2

}
= E

{(
VN−1 − VN−2 − ξN−2∆SN−2+

+ kξNSN−1χN

(
ξN−1

)
− kξN−1SN−1χ

(
ξN−1

))2∣∣FN−2

}
=

= E

{[(
VN−1 − E

(
VN−1

∣∣FN−2
))

+ kξNSN−1χN

(
ξN−2

)
−

− kEξNSN−1χN

(
ξN−1

)
− ξN−1

(
∆SN−1 + kSN−1χN

(
ξN−1

)
−

− kE
{
SN−1χN

(
ξN−1

)∣∣FN−2
})]2∣∣∣FN−2

}
−→ min.

After change the notations we get:

rN
(
z
)

= E

{(
lN
(
SN−1, SN−2, Z

)
− ZhN

(
SN−1, SN−2, Z

))2∣∣FN−2

}
,

where

lN := H1

(
SN−1

)
− E

(
VN−1

∣∣FN−2
)

+ kJ0
(
SN−1

)
SN−1χN

(
Z
)
−

− kEJ0
(
SN−1

)
SN−1χN

(
Z
)
,

hN := ∆SN−1 + kSN−1χN

(
Z
)
− kE

{
SN−1χN

(
Z
)∣∣FN−2

}
and also

χN

(
Z
)

=

1; ξN ≥ Z

−1; ξN < Z.
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For ∆SN = ρNSN−1, βk = 1 + αk we have

ξN = J0
(
SN−1

)
∈
{
J0
(
β0SN−2

)
, . . . , J0

(
βkSN−2

)}
.

Now, the following cases are considered below, in order to derive the desired strategy.

Here we investigate the behavior of the risk function r. For this, the following cases are

considered to derive the desired strategy. In addition, the end intervals may coincide with

the origin orwith the in�nity. It means:

Z0 = −∞;

Z1 = Z1

(
SN−2

)
= min

1≤i≤m
J0
(
βiSN−2

)
;

Z2 = Z2

(
SN−2

)
= min

2≤i≤m
J0
(
βiSN−2

)
;

. . .

Zm = Zm

(
SN−2

)
= max

1≤i≤m
J0
(
βiSN−2

)
;

Zm+1 = +∞.

For Z ∈
(
Zi−1;Zi

]
, i.e., Zi−1 < Z ≤ Zi we denote with

χN

(
Z
)

:= χ
(
ξN ≥ Z

)
− χ

(
ξN < Z

)
= χ

(
ξN ≥ Zi

)
− χ

(
ξN ≤ Zi−1

)
= χN

so that lN , hN can be written as

lN = lN,i = H1

(
SN−1

)
− E

(
VN−1

∣∣FN−2
)

+ kJ0
(
SN−1

)
SN−1χN,i−

− kEJ0
(
SN−1

)
SN−1χN,i,

hN = hN,i = ∆SN−1 + kSN−1χN,i − kE
{
SN−1χN,i

∣∣FN−2
}
, we deduce

rN
(
Z
)

= rN,i

(
Z
)

= E
{(
lN,i − ZhN,i

)2∣∣FN−2

}
, which

Z∗i = Z∗i
(
SN−2

)
= arg min

Zi−1<Z≤Zi

rn
(
Z
)

and �nally we obtain that

Θ∗N−1 = Θ∗N−1
(
SN−2

)
= arg min

o≤i≤m+1
rn
(
Z∗i
)

= J1
(
SN−2

)
. (8)
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is the solution of (6).

So the required strategy is given by ξN−1 = J1
(
SN−2

)
and

VN−2 = E
(
VN−1

∣∣FN−2
)

+ kE

(
ξNSN−1χN

(
J1
(
SN−2

))∣∣FN−2

)
−

−kJ1
(
SN−2

)
E
{
SN−1χNJ1

(
SN−2

)∣∣FN−2

}
.

k-th step can be shown in the same way as in the step 2.

Thus, theorem 1 is proved.

The previous result can be extended to the case when the price process is a markovian.

Theorem 2

Assume that S =
(
Sn

)
n = {1, . . . , N} is a markovian (or markov-prozess) with respect to

given �ltration and let H be a contingent claim.

Then an H-admissiblel risk minimizing strategy ϕ = (ξ, η) under transaction costs satis�es

the relations

ξn = Θ∗n = Θ∗n
(
Sn−1

)
= arg min

o≤i≤m+1
rn
(
Z∗i
)

= JN−n
(
Sn−1

)
, (9)

where Z∗i = Z∗i
(
Sn−1

)
= arg min

Zi−1<Z≤Zi

rn
(
Z
)

and ηn = Vn(ϕ)− ξn+1Sn, n = {1, . . . , N} with

Vn−1 = E
(
Vn
∣∣Fn−1

)
+ kE

(∣∣ξn+1 − ξn
∣∣Sn

∣∣Fn−1
)
− ξnE

(
∆Sn

∣∣Fn−1
)

(10)

n ∈ {0, 1, . . . , N}, N being a maturity time.

The risk function is given by

rt
(
ξn
)

= E
{(
Vn − Vn−1 − ξn∆Sn + kSn

∣∣ξn+1 − ξn
∣∣)2∣∣Fn−1

}
. (11)

Proof. The proof is very similar to that of Theorem 1. The only di�erence is that we apply

the general form of portfolio.

Remark 3

It can happen in the following two theorems that ri(µi) = rj(µj), µi 6= µj where i, j =

0, 1, . . . , N and i 6= j. In this case, one can choose any of ri(µi).
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The problem of �nding a risk-mimimizing strategy including transaction costs for a �nite

probability space has also been solved.

Finally, it should be noted that the above method can easily be generalized to American

options, but with the di�erence that in the American-style options, the problem of optimal

stopping occurs (see Safarian [7]). In this context, the well-known Bellman principle of

backward induction is applied. One must also consider the risk-minimizing strategy includ-

ing transaction costs, in the case where the price process takes in�nitely many values. This

can be more rigorously (see Lamberton/Pham/Schweizer [5]), shown by analogy.

2 Risk-Minimization under transaction costs

(continuous time model)

In this section we consider generalization of the fundamental theorem of Föllmer-Sondermann

in the presence of linear transaction costs. In this case, the price process is a square integrable

martingale. The hedging strategy can be constructed using the Kunita-Watanabe projection

technique.

2.1 Formulation of the problem

Consider the probability space (Ω, F, P, ((Ft)t≥0), with a �ltration (Ft)t≥0 and an increasing

family of σ - algebras included in F.

Let S = (S)t≥0 be a square-integrable semimartingale.

De�nition 3

a) A pair ϕ = (ξ, η) is a trading strategy, if it satis�es the following properties:

ξt is Ft+1-measurable, 0 ≤ t ≤ T and

ηt is Ft-measurable, 0 ≤ t ≤ T.

b)A value process at time t is given by

Vt(ϕ) = ξtSt + ηt.

c) The random process G = gt(ϕ), 0 ≤ t ≤ T is called linear transaction cost process at the

time t and is given by

10



gt(ϕ) =

t∫
0

gudu = k

t∫
0

fuSudu, (12)

where St is the stock price at time t and ft is a number of selling or buying stock at time t

and constant k is the coe�cient of transaction costs.

d) The cumulative cost Ct(ϕ) at time t in the presence of transaction costs can be represented

in the following way

Ct(ϕ) = Ct(ϕ)−
t∫

0

ξudSu +

t∫
0

gudu.

Note that both processes are well-de�ned, right-continuous and square-integrable.

The aim is to construct an H-admissible mean self-�nancing strategy in the presence of

transaction costs:

1) E
(
(CT − Ct)

∣∣Ft

)
= 0

2) Rt(ϕ) = E
(
(CT − Ct)

2
∣∣Ft

)
−→ min, such that VT = H a.s.

Lemma 1. Let ϕ = (ξ, η) be a trading strategy with a risk function Rt(ϕ) and t ∈ [0;T ].

Then there exists a trading strategy ϕ∗ = (ξ∗, η∗) satisfying

a) VT (ϕ∗) = VT (ϕ) a.s.

b) Ct(ϕ
∗) = E

(
CT (ϕ∗)

∣∣Ft

)
a.s. for all t ∈ [0;T ].

c) Rt(ϕ
∗) ≤ Rt(ϕ) a.s. for all t ∈ [0;T ].

Proof. a)By setting ξ∗t = ξt and

ηt = E

((
Vt(ϕ)−

T∫
0

ξudSu +

T∫
0

gudu
)∣∣∣Ft

)
+

t∫
0

ξudu− k
t∫

0

gudu− ξtSt

we obtain this relation

Vt(ϕ
∗) = E

{(
Vt(ϕ)−

T∫
0

ξudSu +

T∫
0

gudu
)∣∣∣Ft

}
+

t∫
0

ξudu−
t∫

0

gudu

for the value process.

It implies that Vt(ϕ
∗) = VT (ϕ).
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b) The proof of b) follow directly from de�nition of cost process, i.e.

Ct(ϕ
∗) =Vt(ϕ

∗)−
t∫

0

ξudSu +

t∫
0

gudu =

=E

{(
Vt(ϕ)−

T∫
0

ξudSu +

T∫
0

gudu
)∣∣∣Ft

}
=

=E
(
CT (ϕ∗)

∣∣Ft

)
= E

(
CT (ϕ)

∣∣Ft

)
.

c) For the risk function Rt(ϕ) we have that

Rt(ϕ) =E
((
CT (ϕ)− Ct(ϕ)

)2∣∣Ft

)
=

=E
((
CT (ϕ∗)− Ct(ϕ

∗)
)2∣∣Ft

)
+

+E
((
CT (ϕ∗)− Ct(ϕ

∗)
)(
CT (ϕ∗)− Ct(ϕ

∗)
)∣∣Ft

)
+

+
(
Ct(ϕ

∗)− Ct(ϕ)
)2

= Rt(ϕ
∗) +

(
Ct(ϕ

∗)− Ct(ϕ)
)2
.

It results that

Rt(ϕ
∗) < Rt(ϕ).

Thus, the lemma is proved.

2.2 Theorem of Föllmer-Sondermann including transaction costs

Now we consider the special case where the price process S is a square-integrable martin-

gale. We show how the fundamental Theorem of Föllmer-Sondermann can be generalized

including transaction costs.

Let S = (St)t∈[0;T ] is a square-integrable martingale, i.e. E
(
St+1

∣∣Ft

)
= St, 0 ≤ t ≤ T .

Let ϕ = (ξ, η) be an H-admissible trading strategy. If ϕ is mean-self-�nancing, then the

value process Vt (0 ≤ t ≤ T ) is a martingale, hence of the form

Vt = Vt(ϕ) := E
(
H
∣∣Ft

)
. (13)
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Remark 4

For every contingent claim H the process Vt(ϕ) is called forecast process (see [8] De�nition

II.2). The process Vt(ϕ) is a right-continous square-integrable martingale.

Now we want to give a direct construction of the optimal hedging strategy in the presence

of transaction costs.

The process of transaction costs at time t is given by

gt := kftSt, 0 ≤ t ≤ T,

whereft is a nonanticipating random process.

From the martingale property of S, we can now use the fact, that H can be rewritten as

H = EH +

T∫
0

µH
u dSu + LH

T ,

where µH is a predictable process and LH
T , 0 ≤ t ≤ T is a martingale which is orthogonal to

St.

For any H-admissible trading strategy ϕ = (ξ, η), the processes Vt(ϕ) and ηt under transac-

tion costs are given by

Vt(ϕ) = E
{
H +

T∫
t

gudu
∣∣Ft

}
(14)

and

ηt = Vt(ϕ)− ξtSt. (15)

The cost process Ct(ϕ) at time t in the presence of transaction costs is given by

Ct =E

((
H +

T∫
t

gudu
)∣∣Ft

)
−

t∫
0

ξudSu +

t∫
0

gudu =

=E

((
H +

T∫
0

gudu
)∣∣Ft

)
−

t∫
0

ξudSu.

(16)
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(16) together with De�nition 3 yields

CT − Ct =H +

T∫
0

gudu+

T∫
0

ξudSu − E
(
H
∣∣Ft

)
−

−E
( T∫

t

gudu
∣∣Ft

)
+

t∫
0

ξudSu =

=

T∫
t

(µH
u − ξu)dSu + k

T∫
t

fuSudu− E
(
k

T∫
t

fuSudu
∣∣Ft

)
+ LH

T + LH
t .

(17)

From now on, we set

T∫
t

fuSudu = J(t)St −
T∫
t

J(u)dSu,where J(t) =

t∫
0

fudu. (18)

Using these notations, we have

T∫
t

gudu− E
( T∫

t

gudu
∣∣Ft

)
= J(T )ST − E

(
J(T )ST

∣∣Ft

)
−

T∫
t

J(u)dSu

and applying Kunita-Watanabe decomposition we see that

J(T )ST = E
(
J(T )ST

)
+

T∫
0

νudSu + L∗T . (19)

Taking equality (19) into account we obtain

T∫
t

gudu− E
( T∫

t

gudu
∣∣Ft

)
= k
( T∫

t

νudSu + L∗T − L∗t −
T∫
t

J(u)dSu

)
.

We assume without impairing the generality that k = 1.

This implies, that

CT − Ct =

T∫
t

(
µH
u − ξu + νu − J(u)

)
dSu + L∗T − L∗t + LT − Lt

14



which yields

E
(
(CT−Ct)

2
∣∣Ft

)
= E

{ T∫
t

(
µH
u −ξu+νu−J(u)

)2
d〈S〉u

∣∣∣Ft

}
+E

{
(L∗T−L∗t +LT−Lt)

2
∣∣Ft

}
.

This allows us to conclude that

ξn = µH
n + νn − J(n) (20)

is the optimal hedging strategy.

We have just proved the following theorem:

Theorem 3

Assume that S = (S)t≥0, for all t ∈ [0;T ] is a square-integrable martingale. Then for ev-

ery contingent claim H ∈ L2(P ) there exists a unique H-admissible risk-minimizing strategy

ϕ = (ξ, η) under linear transaction costs (12) and it is given by formulas (15) and (20).

3 Conclusion

In contrast to the complete market, in the incomplete there is no unique martingale measure

and a general claim is not necessarily a stochastic integral of the price process. A perfect

hedge is no longer possible. From an economic point of view, this means that such a claim will

have intrinsic risk. The problem is to construct strategies including transaction costs that

minimize risk. In this context, it was shown that a unique risk-minimizing strategy exists. In

the continuous market model, it can be constructed using the Kunita-Watanabe projection

technique in the space M2 of square-integrable martingales. In the discrete time market

model, the strategy is given a closed-form formula, which facilitates practical applicability

of the method.
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