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1 Statement of the problem

The present work considers the problem of investment portfolio risk estimation, including dy-

namic adjustment for each new transaction. Any Bank portfolio has a complex structure. It

consists of stocks, bonds and a set of derivative securities. A portion of bonds and loans is

riskless. For some of these assets, the methods offered cannot be applied without additional

consideration of the term structure of interest rates and credit risks features. The risk estima-

tion of this part of the portfolio containing some peculiar financial tools represents a separate

issue, solving which exceeds the limits of the present research.

We use as an estimation of a portfolio risk the amount of probable losses that can be sus-

tained in case of a complete asset sale, related to current market value of these assets.

The investment portfolio includes a number of shares, sale of which can significantly affect

the market for a brief period of time, making the calculated estimation of risk insolvent. Thus

it is necessary to estimate the quantity of shares that can be sold without having a material

influence on the prices dynamics. Knowing this size, it is easy to calculate a time interval

during which this portfolio can be sold. Definition of the stability of the concrete market is

directly concerned with its specificity. This represents a separate practical problem, which is

not considered in the submitted paper.

Consequently, for a portfolio risk calculation, it is necessary to estimate dynamics of price

behaviour for the time period during which controllable realization of portfolio assets is possible.

Such an approach is described in many papers where estimation of risk is based on studying

prices dynamics of stocks included in a portfolio (VaR - ”RiskMetrics”, RiskManagement+).

However, forecasting such processes represents a complicated problem itself. For example,

on NASDAQ the prices of the most liquid stocks have large volatility. Deviation from average

value of a stock price can run up to several percent even on ordinary days. To circumvent this

problem, a new approach, which is not considered earlier, is offered in the given research.
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2 Analysis of the empirical data

2.1 Volume weighted average price (VWAP)

Volume weighted average price (VWAP) is an analysis tool professional traders systematically

use to assist themselves in decision making. To define this value let us consider a sequence

of transactions with the prices p1, . . . , pn and appropriate volumes V1, . . . , Vn, then VWAP is

calculated as follows:

(VWAP )n =

n∑
i=1

piVi

n∑
i=1

Vi

.

For example, if there are two transactions for the KRFT symbol with the prices 56$, 55$

and volumes 200 stocks and 300 stocks accordingly, then the VWAP price for KRFT is equal

to

55.4$ =
56 ∗ 200 + 55 ∗ 300

200 + 300
.

The VWAP is often a benchmark for traders. If you bought a stock today at a price lower

than the current cumulative VWAP, you bought the stock at a good price (you did better than

the average price of the asset). On the other hand, if you sell a stock higher than the current

cumulative VWAP you again did better than the market is.

The stability to sharp jumps is a distinctive feature of such representation of the price.

This property is perfectly illustrated in figure 1. It is obvious, that VWAP diagram is much

smoother than the diagram of the price. One of the most important shortcomings of VWAP

representation for the stock price is the impossibility to determine the actual stock price at any

moment of time without additional information. However, VWAP allows to essentially reduce

a degree of estimated risk due to it’s stability and small volatility in comparison with behaviour

of an actual stock price.

Despite the obvious advantages of the average price, there has not been developed a technical

system of selling stocks at VWAP. The system developed by us allows to sell stocks for some

period of time intraday in such a manner that with some error the average price of transactions

coincides with VWAP for the same period of time. This program is used at work on NASDAQ

and has shown the following results. For example, during the work since December 12 2012

to February 8 2013 the statistics for a difference between real VWAP value and the value

forecasted by this system was as follows:
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Figure 1: Diagram of the transaction prices and VWAP for the Kraft Foods Groups stock on

NASDAQ (July, 22, 2013). The dynamics of the stock price is represented with red color, and

VWAP behavior is represented by dark blue line

mean: 0,

standard deviation: 5,8 cents.

There was used a sample of 20 stocks from Nasdaq100 for this research.

From the analytical point of view what plays the main role is the assumption about normality

(gaussianity) of brownian motion distribution. Thus, naturally, there is a question about the

degree of compatibility of the real statistical data with (1) hypothesis about the normality and

(2) hypothesis about the independence of successive increments for Ht = lnSt.

Traditionally the statistical analysis for the given case is based on the analysis of yt =

Ht −Ht−1 = ln St
St−1

or xt = St
St−1
− 1 where S1, S2, . . . are the successive prices of some asset.

Under the hypothesis of fitness of S = (St) to the geometrical brownian motion, the sequence

y = (yt), t = 1, 2, . . . , consists of identically independent distributed random variables, yt ∼

N (µ, σ).

In the financial literature devoted to analysis of properties for y = y(yt), t = 1, 2, . . . ,

sequence, it was repeatedly specified, that the assumption about normality is rather disputable,
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due to some properties of the empirical density function which has a higher excess and heavier

tails than density function of normal distribution. Furthermore the shape of density function

of the empirical data can be asymmetric, i.e. it has different left and right tails.

In other words, the empirical data can not be approximated with normal distribution, and

there are specific types of processes to be considered for aforementioned reasons. Hyperbolic

distributions, ARCH-type processes and Levy’s processes are considered in the represented

paper.

2.2 ARCH-type models

In the course of numerous researches it was found out that the conditional variance of the

financial time series is not constant through the time. This property turned out to bevery

important for the construction of risk estimation procedures, and consequently caused huge

interest among both researchers and experts. As a result plenty of volatility estimating models

were created on the basis of ARCH model introduced by Engle (1982).

ARCH

Let yt be a stochastic variable which is defined in some information set Ft−1. Formally, Ft−1

is the sigma-algebra, generated by the set of all variables which appeared by the t− 1 moment

of time. Let us define yt as the logarithm of the successive increments of some financial variable

(the stock price, bond yield, volume weighed average price etc.) ratio

yt = ln
pt
pt−1

.

Actually the problem is reduced to modelling the conditional density function for yt, which can

be denoted as

f(y|Ft−1) ≡ d

dy
P (yt 6 y|Ft−1),

where P (yt 6 y|Ft−1) is the conditional probability. It is necessary to note that functions of the

conditional mean and conditional variance are parametrized with a finite dimensional vector

θ ∈ Θ ⊆ Rn, θ0 is a vector of intrinsic values. The most important thing in ARCH-type models

is the conditional variance, while the conditional mean just of secondary importance. It can be

modelled in a rather simple way:

µt = µ0 + µ1ζ(σt−1),
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where ζ(x) = x2. As a rule, a conditional mean can be represented as a constant or just a zero,

otherwise there occurs superfluous complexities at modelling which do not result in essential

improvement of the result.

Let us define that process {εt(θ)} corresponds to ARCH model if the conditional mean of

it is equal to zero,

Et−1(εt(θ)) = E[εt(θ)|Ft−1] = 0, t = 1, 2.,

and a conditional variance

σ2
t (θ0) = Vart−1(εt(θ0)) = Et−1(ε2

t (θ)), t = 1, 2

non-trivially depends on the previous values {εt−1(θ), εt−2(θ), . . .}.

Let us denote the conditional mean as µt(θ0) = Et−1(yt), t = 1, 2, . . . The process {εt(θ)}

will be defined as follows

εt(θ0) = yt − µt(θ0) t = 1, 2, . . .

The conditional variance of {εt} equals to the conditional variance of {yt}, and its conditional

expectation is equal to zero. It is necessary to resort to such substitution, because the condi-

tional mean of real time series used in economy is equal to zero only in very rare cases.

Let us define

zt(θ0) =
εt(θ0)√
σ2
t (θ0)

,

it is easy to see that its conditional mean of zt(θ0)) is equal to zero, and a conditional variance —

to unity. This normalization allows us to compare our process with some standard distributions,

for example, standard normal distribution.

According to linear ARCH(q) model the conditional variance should linearly depend on last

q available squared values.

σ2
t = α0 +

q∑
i=1

αiε
2
t−i

For the model to be well defined and the conditional variance to be positive it is necessary

for the parameters to satisfy the following conditions

α0 > 0, α1, . . . , αq > 0

If define νt = ε2
t − σ2

t , the model can be rewritten in the following way:

ε = α0 +

q∑
i=1

αiε
2
t−i + ν2

t .

6



Since Et−1 = 0 the model directly corresponds to AR(q) model for squared increments ε2
t .

Such processes have a property of covariant stability in the only case when the sum of positive

parameters of autoregression is less than the unity. In this case the variance of the process is

equal to

Var(εt) = σ2 =
α0

1− (α1 + ...+ αq)

Even in spite of the fact that εt are serially uncorrelated, i.e. the coefficient of autocorrelation

is close to zero, there is no obvious independence of process through the time. According to some

features of successive price increment logarithms distribution ratio there is a small evidence to

expect that the big (small) changes can be followed by big (small) changes of an unpredictable

sign. For the same reasons it is possible to say that if the distribution of the normalized process

zt is a stable, then unconditional distribution of εt has heavier tails than the distribution for

zt.

GARCH

Plenty of parameters and a large lag are often required for the experimental implementation

of ARCH(q). To circumvent this problem Bollerslev offered GARCH(p, q) (Generalized ARCH)

model,

σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i = α0 + α(L)ε2

t−1 + β(L)σ2
t−1,

where L denotes the lag or backshift operator, Liyt = yt−i.

For the conditional variance in the GARCH(p, q) model to be well defined all the coefficients

in the corresponding infinite order linear ARCH model must be positive. Provided that α(L)

and β(L) have no common roots and the roots of polynomial β(x) = 1 lie outside the unity

circle, this positivity constraint is satisfied if and only if all the coefficients in the infinite power

series expansion for α(x)/(1 − β(x)) are non-negative. For the simplest GARCH(1,1) model

almost sure the positivity of σ2
t requires that α0 > 0, α1 > 0 and β1 > 0.

GARCH(p, q) can be rewritten as follows:

ε2
t = α0 + (α(L) + β(L))ε2

t−1 − β(L)νt−1 + νt,

that defines ARMA(max(p, q)) model for ε2
t . It follows from the aforementioned reasons that

the model is covariantly stable, if and only if all the roots of α(x)+β(x) = 1 lie outside the unity

circle. In many applications with high frequency financial data the estimation for α(1) + β(1)

turn out to be very close to unity.
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Other ARCH type models

The event described above provides an empirical motivation for the so-called Integrated

GARCH(p, q) or IGARCH(p, q) model introduced by Engle and Bollerslev (1986) which can be

written with the following way:

σ2
t = α0 + ε2

t−1 +

p∑
i=2

αi(ε
2
t−i − ε2

t−1) +

q∑
j=1

βj(σ
2
t−j − ε2

t−1)

In the IGARCH class of models the autoregressive polynomial has a single root which means

that the impact on the conditional variance is persistent in the sense that it remains important

for future forecasts of all horizons.

Empirical researches have shown, that GARCH successfully captures thick tails of the suc-

cessive data increments distribution and volatility clustering, apart from this it is easy to modify

it in such a way that it could work with another features of the market such as non-trading

period and forecastable events. However it is not well suited to capture the “leverage effect”,

since the conditional variance is a function depending only on the magnitudes of the lagged

residuals and not on their signs.

Nelson (1991) has offered EGARCH (Exponential GARCH) model, which depends both on

magnitudes and sings of lagged residuals:

ln(σ2
t ) = α0 +

p∑
i=1

[αiεt−i + γi(|εt−i| − E|εt−i|)] +

q∑
j=1

βj lnσ2
t−j

Thus the lnσ2
t corresponds to ARMA(p, q) process with already considered stability conditions.

As well as in the GARCH case it is possible to make α0 function of time. By this manner the

model can be adapted to effects of non-trading period and forecastable events. Apart from the

above mentioned one,there are plenty of another ways for volatility evaluation. For example, to

satisfy the property of volatility clustering GARCH assumes that conditional variance equals

to distributed lag of squared residuals. An equally natural assumption is that the conditional

variance is the distributed lag of the absolute residuals:

σt = α0 +

p∑
i=1

αi|εt−i|+
q∑
j=1

βiσt−j.

this assumption was brought forward by Taylor and Schwert. Higgins and Bera have combined

GARCH and the model just considered, and put them to the NGARCH (Non-linear GARCH)

class of models,

σδt = α0 +

p∑
i=1

αi|εt−i|δ +

q∑
j=1

βjσ
δ
t−j

8



However this model does not capture “leverage effect”, therefore A-PARCH modification was

proposed

σδt = α0 +

p∑
i=1

αi[|εt−i| − γiεt−i]δ +

q∑
j=1

βjσ
δ
t−j

When formulating the equation with γ = 2 one obtains a special case of QARCH model, in

which volatility is modelled as a quadratic form in the lagged residuals. The simplest version

of this model was named AARCH (Asymmetric ARCH),and in the first order case it becomes:

σ2
t = α0 + αε2

t−1 + δεt−1 + βσ2
t−1,

where the negative value of δ means that positive returns increase volatility less, than the

negative ones.

Another way to take into account the effect of asymmetry is:

σγy = α0 +

p∑
i=1

[α+
i I{εt−i>0}|εt−i|γ + α−i I{εt−i60}|εt−i|γ] +

q∑
j=1

βjσ
2
t−j,

where I{·} denotes the indicator function. A special case of this model is TARCH (Threshold

ARCH) which corresponds to previous equation with γ = 1:

σy = α0 +

p∑
i=1

αi[(1− γi)ε+
t−i − (1 + γi)ε

−
t−i] +

q∑
j=1

βjσ
2
t−j,

another special case with γ = 2 is GJR model.

σ2
t = α0 +

p∑
i=1

[αi + γiI{ε2t−i>0}]ε
2
t−i +

q∑
j=1

βjσ
2
t−j

This model allows a quadratic response of volatility to news using different coefficients for good

and bad news, but maintains the assertion that the minimum volatility will result when there

is no news.

There exists plenty of ARCH type models modifications, some of which are represented

below:

σ2
t = α0 +

p∑
i=1

[αiε
2
t−i + γiεt−i] +

q∑
i=1

βjσ
2
t−j A-GARCH

σ2
t = α0 +

p∑
i=1

αi(εt−i + γiσt−i)
2 +

q∑
i=1

βjσ
2
t−j NA-GARCH
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σ2
t = α0 +

p∑
i=1

αi(εt−i + γi)
2 +

q∑
i=1

βjσ
2
t−j V-GARCH

lnσt = α0 +

p∑
i=1

αi|εt−i|+
q∑
i=1

βj lnσ2
t−j log-GARCH

σ2
t = α0 +

p∑
i=1

αiεt−i +

p∑
i=1

αiiε
2
t−i +

p∑
i<j

αijεt−iεt−j +

q∑
i=1

βjσ
2
t−j GQ-GARCH

2.3 GARCH(1,1)

The simplest model of the class of GARCH models is GARCH(1,1) which is represented with

the formula

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

This model is especially appealling because of its simplicity, as it contains only three param-

eters. There exist many ways to estimate the parameters of the model, such as the maximum

likelihood method,the method of quasi-maximum likelihood etc.

The researches carried out during a long period of time have shown that GARCH(1,1)

does not so well describe the big time series, but it can be used on small lags. Moreover, the

researchers found out that this model estimates volatility with high accuracy, and its precision

is just in some cases lower than the one of the competing models. Just due to its simplicity for

practical implementation and high accuracy GARCH(1,1) is widely adopted among the experts.

When using GARCH(1,1) for a long period of time it is necessary to update parameters

of the model. In this relation, it is necessary to resolve the problem of how to calculate the

moment of time at which the parameters should be revalued. It has to be noted that the

distribution of GARCH processes have Pareto-like tails, i.e.

P (X > x) ∼ c0x
−k under x→∞ for any c0, k > 0

Experience shows that for long lags φ1 = α1 + β1 is usually close to 1, for example Bollerslev

and Mikkelsen applied GARCH (1,1) to S&P500, and using daily data from 1958 to 1990, have

received value φ1 = 0, 995, when used on the data with higher frequency, φ take on a lower

value.
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2.4 Maximum Likelihood method

The parameters of GARCH(1,1) model is vector θ0 = (α0, α1, β1). One of the most often used

methods in estimating θ0 for ARCH models is based on maximization of a likelihood func-

tion constructed under the auxiliary assumptions of an i.i.d. distribution for the standardized

innovations.

Let {yT , yT−1, . . . , y1} denote a set of empirical data which satisfy the conditions of ARCH

model. The log likelihood function for tth observation is given by

lt(yt, θ) = ln(f(zt(θ)))−
1

2
lnσ2

t (θ),

where f(zt(θ)) is a density function for zt(θ) distribution. The second term on the right hand

side is a Jacobian that arises in the transformation from the standardized innovations zt(θ) to

the observable data yt(θ). By a standard way, the log likelihood function for the sample should

be denoted as a sum of the conditional log likelihood functions as follows

LT (yT , yT−1, . . . , y1) =
T∑
t=1

lt(yt)

The maximal likelihood estimator for the true parameters θ0 is found by maximization of this

function.

The actual implementation of the maximum likelihood procedure requires an explicit def-

inition for the conditional density f(zt(θ)). The distribution most commonly employed in

literature is a standard normal one which looks as

f(zt(θ)) =
1√
2π
e−

z2t
2

consequently

lt(yt) = ln

(
1√
2π
e−

z2t
2

)
− 1

2
lnσ2

t = ln

(
1√

2πσ2
t

e
− (yt−µt)

2

2σ2t

)
=

= −1

2
ln 2π − 1

2
lnσ2

t −
(yt − µt)2

2σ2
t

Following GARCH(1,1) model conditional variance equals

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1,

due to constancy of the parameters it can be rewritten as follows

σ2
t = α0(1− β1) + α1ε

2
t−1 + β1σ

2
t−1,
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where each σ2
t has the same representation, and σ2

1 = α0. Taking into consideration the sum of

geometric series let us write down the next formula for σ2
t

σ2
t = α0 + α1

t−2∑
i=0

βi1ε
2
t−i−1

Consequently expression for the likelihood function is

LT ({yt}) =
T∑
t=1

lt(yt) = −1

2
T ln 2π − 1

2
lnα0 −

(y1 − µ1)2

2α0

− 1

2

T∑
t=2

lnσ2
t −

T∑
t=2

(yt − µt)2

2σ2
t

2.5 Hyperbolic distributions

As it was mentioned above, empirical density can not always be adequately described with

the help of a normal distribution. Let us consider two assumptions related to this fact: (1)

there exists statistically stable nongaussian distribution of empirical data; (2) there is no any

statistically stable distributions, in this case it is implied that actual data can be approximated

with some mixtures of distributions (may be Gaussian), with different parameters. As a result

of such representation of the empirical data summary distribution is something more complex

then distributions of summands.

-0.06 -0.04 -0.02 0.02 0.04 0.06

5

10

15

20

25

30

35

Figure 2: The comparative diagram of the empirical data, normal and gaussian distributions.

Empirical data are represented with points, normal distribution is a light green curve and a

gaussian distribution is represented with dark blue color.

The class of hyperbolic distributions was considered for the approximation of empirical data.
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Implementation of these distributions in financial mathematics was offered by Eberlein E. and

Keller U. (see [6], [7] and [8] for example).

In the simplest case (actually hyperbolic distribution) density function is represented as

follows:

h(x;α, β, δ, µ) = C(α, β, δ) e−α
√
δ2+(x−µ)2+β(x−µ). (1)

C(α, β, δ) is the normalizing constant which has the following form

C(α, β, δ) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

(2)

where K1(x) is a modified Bessel function of the third order with index 1.

The origin of the term “hyperbolic” is related to the following circumstance. Logarithm

lnφ(x) of the normal density

φ(X) =
1√

2πσ2
e−

(x−m)2

2σ2

is a parabola. In the same way logarithm lnh(x) of the density function of the “hyperbolic”

distribution is a hyperbola. Indeed, the equation

y = −α
√
δ2 + (x− µ)2 + β(x− µ) (3)

with asymptotes

−α
2
|x− µ|+ β(x− µ) = 0 (4)

after the substitution z = y − β(x − µ) and squaring it will take the form of a hyperbola

equation.

It is supposed that parameters (α, β, δ, µ) in (1) satisfy the following conditions

α > 0, 0 6 |β| < α, µ ∈ R, δ > 0.

The condition |β| < α cause a decrease of the density function (1) under x → ±∞, which

is a true property of probabilistic density. Density function decrease has the same speed as an

exponential function exp{−(α±|β|)x}. The normal density has a decrease speed exp{−x2/2σ2},

i.e. it is much faster than the exponential function. This property of the gaussian density

function give an evidence to believe that it can approximate empirical data with their “heavy”

tails better the the normal one.

Each parameter in formula (1) has its own meaning, µ is just the shift parameter (x is

replaced with x − µ), δ is the scale parameter. It should be mentioned that the hyperbolic

distribution is invariant under shift and scale changes. Parameters α and β are responsible
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for the shape of function. β is related to skewness of the distribution function with respect to

x = µ point, if β > 0, the right tail decreases slower than the left one (vice versa,if β < 0).

It is offered to apply distribution (1) for the description of increments process ∆ lnSt =

lnSt+∆ − lnSt. The set of examples of empirical data well fitted with hyperbolic distribution

is represented in papers [6]-[8].

Let us consider another representative of the class of generalized hyperbolic distributions,

it is so-called “Gaussian—Inverse Gaussian” distribution (see [9]).

The density of GIG-distribution is given

g(x) = C1(α, β, δ, µ)

(
q

(
x− µ
δ

))−1

K1

(
αδq

(
x− µ
δ

))
eβ(x−µ), (5)

where

C1(α, β, δ) =
α

π
eδ
√
α2+β2

,

q(x) =
√

1 + x2.

It should be noted, that as

K1(x) ∼
√
π

2
x−1/2 e−x, x→∞,

then under |x| → ∞

g(x) ∼
( α

2πδ

)1/2

· 1

1 +
(
x−µ
δ

)2 exp
{
−α
√
δ2 + (x− µ)2 + β(x− µ)

}
(6)

and, concequently,

ln
h(x)

g(x)
ln

(
1 +

(
x− µ
δ

)2
)
, |x| → ∞. (7)

The checking of how the hyperbolic distribution fits the empirical data was undertaken in

papers [8] and [10]. In paper [9]it was marked that GIG-distribution is well fitted to the sample

received from hyperbolic distribution, and hence it can also approximate empirical data yt well.

It is possible to use the technique offered in paper [11] to estimate the hyperbolic distribution

parameters.

Hyperbolic distribution is significantly simpler than “Gaussian—Inverse Gaussian” distri-

bution (to ascertain this just compare densities h(x) (1) and g(x) (5)). However, there is one

basic circumstance giving preference to the second distribution.

Let the random variable Y inhere of GIG-distribution with g(X) = g(x;α, β, δ, µ) density.

Accordingly, generating function of the moments

E eλY = exp
{
δ
[√

α2 − β2 −
√
α2 − (β + λ)2

]
+ µλ

}
. (8)
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It is obvious from the above mentioned that if (Yi)i=1,...,m independent variables related to GIG-

distribution with the same α and β, but generally speaking different µi and δi, then the sum

Y+ = Y1 + · · ·+ Ym is again GIG-distributed value with the same α and β and

µ+ = µ1 + · · ·+ µm, δ+ = δ1 + · · ·+ δm.

In other words, GIG-distribution is closed (in the specified sense) concerning convolution.

If X has a hyperbolic distribution, then having put β = µ = 0 for simplicity we find, that

E eλX =
α

K1(αδ)

K1(δ
√
α2 − λ2)√

α2 − λ2
(9)

it is obvious that the property of closure which GIG-distributions have, does not exist for a

hyperbolic distribution.

It should be noted in the conclusion that both GIG and hyperbolic distributions are infinitely

divisible.

Thus, appealling properties of hyperbolic and GIG-distributions and their good compliance

with empirical data gives a proof to use them at more detailed description of the processes

H = (Ht)t>0, incluided into the definition of stock prices St = S0 e
Ht .

In the conclusion we will note that the implementation of the hyperbolic distributions class

with the purpose of VAR estimation which will be considered later, represents interesting and

almost unexplored issue. And as hyperbolic distributions are better fitted to the empirical data

than normal distributions it opens wide prospects for solving VAR estimation problem.

2.6 Levy processes

The random process X = (Xt)t≥0, given on probabilistic space (Ω, F, P ) and attaining values

in d-dimensional Euclidean space Rd, is called a d-dimensional Levy process, if the following

conditions are met:

1. X0 = 0 (P-a.s.);

2. for any n > 0 and the set 0 ≤ t0 < t1 < . . . < tn, the values Xt0 , Xt1−Xt0 , . . . , Xtn−Xtn−1

are independent (property of “independence of increments”);

3. for each s ≥ 0 and t ≥ 0 it is true that Xt+s − Xs
d
= Xt − X0 (property of “stability”,

“uniformity” of increments);

4. for each t ≥ 0 and ε ≥ 0 lim
s→t

P (|Xs −Xt| > ε) = 0 (property of “stochastic continuity”);
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5. trajectories (Xt(ω))t≥0 on ω ∈ Ω -a.s. belong to Dd space, consisting of vector func-

tions f = (ft)t≥0, ft(f
1
t , f

2
t , . . . , f

d
t , each component of which f i = (f it )t≥0, i = 1, . . . , d is

continuous on the right and has limits on the left under t > 0.

Levy processes X = (Xt)t≥0 are the processes with homogeneous increments, and conse-

quently their distributions are completely determined by one-dimensional distribution Pt(dx) =

P (Xt ∈ dx). From the very definition of Levy processes it follows that distribution Pt(dx) is

infinitely divisible for each t.

Let φt(θ) = Eei(θ,Xt) =
∫
Rd
ei(θ,x)Pt(dx) be a characteristic function. Then, using the formula

of Levy-Khinchina

φt(θ) = exp{i(θ, Bt)−
∗1
∗2

(θ, Ctθ) +

∫
Rd

(ei(θ,x) − 1− i(θ, x)I(|x| ≤ 1))νt(dx)},

where Bt ∈ Rd, Ct is a symmetric non-negatively definite matrix of the d× d order, and νt(dx)

is a Levy measure (for each t) with the property of
∫
Rd

(|x|2 ∧ 1)ν(dx) <∞.

Because of the uniformity and independence of increments

φt+s(θ) = φt(θ)φs(θ),

consequently

φt(θ) = exp{tψ(θ)}.

Since triplets (Bt, Ct, ν) are unambiguously defined through the characteristic function, they

can be represented as

Bt = t ·B,Ct = t · C, νt(dx) = t · ν(dx),

where B = B1, C = C1, ν = ν1.

Hence

ψ(θ) = i(θ, B)− ∗1
∗2

(θ, Cθ) +

∫
Rd

(ei(θ,x) − 1− i(θ, x)I(|x| ≤ 1))ν(dx.)

The sense of the triplet components, figuratively speaking, is as follows:

1. The first component is a “trend” component responsible for the average movement of the

process.

2. The second component determines the dispersion of a gaussian continuous process com-

ponent.
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3. The third component is responsible for the behaviour of spasmodic process component.

It shows frequency and value of a jump.

A classical example of a continuous Levy process is a standard brownian motion (with

Bt = 0, Ct = t, νt ≡ 0).

A classical example of the process having a finite Levy measure case is Poisson’s process

with parameter λ > 0. In this case Bt = λ · t, Ct = 0, ν(dx) = λ{1}(dx). A characteristic

function has the following form

φt(θ) = exp{λt(eiθ) − 1)}.

It is possible to get a wide class of purely spasmodic Levy processes basing on Poisson’s process.

Let N = (Nt)t≥0 be Poisson’s process with parameter λ > 0, ξ = (ξj)j≥1 is a sequence of

independent identically distributed random variables (independent from N), the distribution

of which is

P (ξi ∈ A) =
ν(A)

λ
,A ∈ B(R)

where λ = ν(R) <∞, ν({0}) = 0. Let’s form the process Xt =
Nt∑
j=1

ξt, t > 0. Direct calculation

shows that

φt(θ) = et
∫

(eiθx−1)ν(dx).

This process is called compound Poisson’s process and it is also a Levy process.

The simplest example of a Levy process with ν(R) =∞ measure can be derived as follows.

Let λ = (λk)k≥1 be a sequence of positive numbers, β = (βk)k≥1 be a sequence of such numbers

that
∞∑
k=1

λkβ
2
k < ∞. Let ν(dx) =

∞∑
k=1

λkI{βk}(dx), then denote N (k) = (N
(k)
t )t≥0, k ≥ 1 as a

sequence of independent Poisson’s processes with parameters λk, k ≥ 1, accordingly.

Assuming X
(n)
t =

n∑
k=1

βk(N
(k)
t − λk · t) it is easy to see that for each n ≥ 1 process X(n) =

(X
(n)
t )t≥0 is a Levy process with Levy measure ν(n)(dx) =

n∑
k=1

λkI{βk}(dx) and

φ
(n)
t = EeiθX

(n)
i = et

∫
(eiθx−1−iθx)νn(dx)

Limit process is also a Levy process.

In connection with “explicit” representations of some (spasmodic) Levy processes, a way for

their modelling can be obtained. This method is based on modelling random variables ξj, βj

only and on modelling exponentially distributed values which determine the intervals between

the jumps of Poisson’s process.
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The second way of modelling is described in O.E. Brandorff-Nielsen “Probability densities

and Levy densities” article. Non-decreasing positive random variables are considered in this

paper. In this case it turns out that the density function of the process X = (Xt)t≥0 distribution

has the following form

f(x, t) =
∞∑
n=1

tn

n!
un(x),

where un = lim
s↓t
unε(x), unε(x) =

n∑
k=1

(−1)n−kCn
k c(ε)

n−ku∗kε (x), u∗nε (x) is an n-dimensional convo-

lution and uε(X)1(s,∞)u(x).

From such representation of distribution density function it directly follows that lim
t↓0
t−1f(x, t) =

u(x). This limit transformation allows to model distribution function with the Levy measure for

small lags. The speed of convergence of this transformation can not be evaluated theoretically,

and it should be calculated for each separate type of processes.

2.7 Analysis of the empirical data distribution

All the researches cover the period of time since October, 2012 till February, 2013. Daily data

could not be used for the statistical analysis due to the insufficient size of the sample. For this

reason in the given paper were used hourly intervals intraday for a set of stocks included in

Nasdaq100 index.

For the following research natural logarithms of the successive price changes were used

S1 = ln
V2

V1

, S2 = ln
V3

V2

, . . . , Sn−1 = ln
Vn
Vn−1

,

where Vi is a VWAP of i-th hour.

2.7.1 Graphical methods of normality testing

Frequency distributions

One of the simplest ways to analyse the distribution of price logarithms changes is to con-

struct frequency distributions for each separate stock. For each stock there can be constructed

quantitative ratios of number of hits of price logarithms changes during some interval and the

total number of the changes considered. The size of the interval can be determined, for exam-

ple, by the numbers representing a product of standard deviation by some coefficients. The

coefficients, for example, can be 0.5; 1; 2; 3; 4; 5. Then, the obtained results can be compared

with results obtained under the assumption that the distribution of price logarithms changes

is normal (see Appendix 1, fig.6).
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Normal probability paper

Other graphical tool for estimating the deviation from normality is plotting on the normal

probability paper. If u is a random gaussian variable with mean µ and variance σ2, then

normalized variable

z =
u− µ
σ

will refer to the normal distribution with the mean equal to zero and the variance equal to

unity, and the diagram of z(u) dependence will be a straight line.

The relation between z and u can be used for estimating The deviation from normality for

u distribution. Let us consider the sorted sample of values ui, i = 1, N , where each ui is an

estimation for f fractile of u distribution. The value of the fractile is specified as:

f =
3i− 1

3N + 1

The exact z value for fractile f of normal distribution can be easily calculated with the help

of the computer. If u distribution is normal, then dependence u(z) has to be a straight line.

Some deviations from linearity are possible due to the errors of the sample. If the observable

deviation is very big it is possible to conclude that u distribution is not normal.

It should be noted that plotting these graphs gives too rough an estimation for normality

and besides they are too subjective (see appendix 1, figure 5). For this reason there appears a

necessity of using more strict statistical criterions, two of which are described below.

2.7.2 Kolmogorov-Smirnov’s criterion of consent

As it has already been mentioned, the size of the sample used is not very large. For this

reason Kolmogorov-Smirnov’s criterion of consent is implemented for checking the empirical

data normality.

The parameters of a theoretical distribution which the empirical data are compared to have

to be known. In the given case a normal distribution is used.

Let us consider the realization of this criterion:

1. Formulation of null and alternative hypotheses

H0 : F̂ (x) = Fmod(x, ~θ)

H1 : F̂ (x) 6= Fmod(x, ~θ),

where F̂ (x) is an empirical distribution, Fmod(x, ~θ) is the given theoretical distribution

with the set of parameters ~θ.
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2. Assignment of a confidence level α.

3. Formulation of critical statistics.

In the criterion considered are implemented the following types of statistics to evaluate

the measure of deviation between empirical and modelling distributions:

Dn = max |F̂ (x)− Fmod(x, ~θ)|

D+
n = max(F̂ (x)− Fmod(x, ~θ))

D−n = max(Fmod(x, ~θ)− F̂ (x))

Statistics
√
nDn and

√
nD−n are called Kolmogorov and Smirnov’s statistics accordingly,

where

Dn = max |D+
n , D

−
n |.

Exact distributions for all the tree types of statistics are known, though Dn statistics is

usually enough for being used in practical implementation. For these reasons let us put

the criterion distribution equal to

ψcr =
√
nDn =

√
nmax |F̂ (x)− Fmod(x, ~θ)|

A.N.Kolmogorov has shown, that if function Fmod(x, ~θ) is continuous, then distribution

ψcr has function

K(ψcr) =
∞∑

i=−∞

(−1)i · e−2i2·ψ2
cr

as its limit.

This function was called Kolmogorov’s function and it does not depend on Fmod(x, ~θ)

function shape.

It is possible to speak about a consistency of Kolmogorov-Smirnov’s criterion implemen-

tation in the case, when the modelling distribution has the parameters of shift and scale

only.

4. From the definition of the distribution function it follows that under any ψcr > 0 and

large enough n the probability of the event that
√
nDn takes ψcr value, is represented as

P
√
nDn > ψcr = 1−K(ψcr) = 1−

∞∑
i=−∞

(−1)i · e−2i2·ψ2
cr = α.
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The value of ψcr.e. can be calculated with the help of the Kolmogorov-Smirnov’s function

values table. The lower critical border is not used in this criterion.

5. ψev can be determined from the expression of the criterion by substituting n and Dn

values for the empirical data used. If the following condition is satisfied

ψev < ψcr.e,

the hypothesis about the consent of empirical and modelling distributions is accepted.

Kolmogorov-Smirnov’s criterion of consent can be used not only with small samples but

with big ones too. For this purpose it is necessary to represent the sample in aggregated form

and thevalues of F̂ (x) and Fmod(x, ~θ) should be calculated on the borders of selected intervals

of aggregation.

2.7.3 Pirson’s chi-square criterion of consent

The chi-square criterion of consent allows to carry out checking the hypothesis about the consent

when the parameters of the model are unknown.

Unknown parameters of the model can be replaced by their estimations obtained from a

sample. The method of moments or the maximum likelihood method can be used to estimate

the model’s parameters.

The chi-square criterion of consent is applicable if the sample size is n > 200 and it demands

grouping of thesample. The number of grouping intervals should satisfy L > 8 condition, and

the amount of hits in each interval µj should not be less than 7-10. Otherwise the neighboring

intervals should be concatenated with an appropriate correction of L.

Let us consider the realization of the criterion:

1. Formulation of null and alternative hypotheses

H0 : F̂ (x) = Fmod(x, ~θ)

H1 : F̂ (x) 6= Fmod(x, ~θ),

where F̂ (x) is an empirical distribution, Fmod(x, ~θ) is theoretical distribution with the set

of parameters ~θ

2. Assignment of confidence level α.
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3. Formulation of critical statistics.

ψcr =
L∑
j=1

(µj − n · pj)2

n · pj
,

where µj, j = 1, L is the amount of hits in each interval of grouping j, pj is the theoretical

probability of hitting interval j.

pj = Fmod(xj+1; ~̂θ)− Fmod(xj; ~̂θ)

Here xj+1and xj are the upper and lower borders of the current interval of grouping

accordingly.

The limit distribution of statistics ψcr under n→∞ has the following form

lim
n→∞

L∑
j=1

(µj − n · pj)2

n · pj
= χ2(ψcr;L− S − 1),

where S is the amount of modelling distribution parameters, the consent with which

should be checked. χ2(ψcr;L−S−1) is a function of chi-square distribution with (L−S−1)

degrees of freedom.

4. Definition of upper and lower critical points with the help of the percentage points table

of χ2 distribution:

ψcr.u = χ2
α/2·100%(L− S − 1)

ψcr.l = χ2
(1−α/2)·100%(L− S − 1)

5. Evaluation of critical statistics

ψev =
L∑
j=1

(µj − n · pj)2

n · pj
,

If the following condition is satisfied

χ2
α/2·100%(L− S − 1) < ψev < χ2

(1−α/2)·100%(L− S − 1),

than the hypothesis H0 is true with an error of the first sort α. In the opposite case the

hypothesis H0 should be rejected.

Rejecting H0 hypotheses at ψev < χ2
α/2·100%(L− S − 1) contradicts common sense at first

sight. However, it is necessary to note that statistics ψev is also a random variable with its

own variance, this means that very big and very small values of ψev statistics are equally

improbable.
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Too small values of ψev can result from a number of reasons. One of them is an un-

successful choice of Fmod(xj+1; ~̂θ) (for example, when the model parameters number has

been artificially overestimated), another one can be an incorrect realization of the exper-

iment with a deformation of the sample (grouping procedure), for example, the desire to

“adjust” empirical data to the result.

The results of implementing both methods for checking the normality of the considered

empirical data from Nasdaq100 you can see in table 1.

Stock α χ2

AMAT 0.69 11.88

BRCD 0.98 9.86

CIEN 0.90 42.38

CSCO 0.98 18.20

DELL 0.89 9.84

INTC 0.95 24.64

JNPR 0.99 10.21

MSFT 0.67 18.05

ORCL 0.95 11.20

SUNW 0.91 35.92

Table 1: The results of normality test of VWAP distribution. Column α consists of the values

of the confidence level obtained with the help of Kolmogorov-Smirnov’s test. Column χ2 consists

of the chi-square test results.

2.8 Checking stochastic independence of successive price logarithms

increments

2.8.1 Median based criterion

Let us consider sample xi, i = 1, n from any total population. It is necessary to check up the

randomnicity and independence of the sample elements. The median based criterion will be
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used for this purpose. This criterion is a rank test.

The procedure of data checking with this criterion consists of the following steps.

1. Formulation of null and alternative hypotheses.

H0: sample elements xi, i = 1, n are stochastically independent,

H1: sample units xi, i = 1, n are not stochastically independent.

2. Assignment of confidence level α.

3. Formulation of critical statistics.

To determine the form of critical statistics, the following sequence of operations has to

be executed.

(a) Variational series have to be shaped

x(1) 6 x(2) 6 . . . 6 x(i) 6 . . . 6 x(n).

(b) Evaluation of a median

x̂med =

 x((n+1)/2), if n is even

1

2
[xn

2
+ xn/2+1], if n is odd

(c) Each element of the initial sample x(i) should be replaced with “+”, if x(i) > x̂med,

and with “—”, if x(i) < x̂med, step to the next element if x(i) = x̂med.

The received sequence of “+” and “—” can be characterized by the quantity of series

ν(n) and by the length of the longest series τ(n). The series consists of successive “+” or

“—” only. The series can consists of only one “+” or “-” sign.

A pair of critical statistics is considered in this criterion simultaneously (bidimentional

critical statistics)

ψcr = ψ{ν(n), τ(n)}.

The limit distribution of ψcr statistics is bidimentional with particular ν(n) and τ(n) limit

distributions.

4. The definition of upper and lower critical points of distribution is carried out in the

following way

νcr(n) =
1

2
(n+ 1−

√
n− 1 · u1−α/2),
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τcr(n) = 3.3 · lg(n+ 1),

where u1−α/2 is a 1− α

2
fractile of normal distribution.

5. Evaluation of critical statistics.

νev(n) denotes the amount of series in the initial sample, and τev(n) is the length of the

longest series. If the following conditions are satisfied simultaneously. νev(n) > νcr(n),

τev(n) < τcr(n),

then H0 hypothesis can be accepted with an error of the first kind α. Otherwise the

sample elements are not stochastically independent.

This criterion has a feature of catching only monotonous change of the average (estimation

of a population mean). For this reason the results obtained from the criterion considered are not

reliable and more valid tests have to be carried out. One of them is the criterion of “ascending”

and “descending” series.

2.8.2 Criterion of “ascending” and “descending” series

By analogy with the described above criterion of series based on the median of the sample, in

the rank test of “ascending” and “descending” series the sequence of series “+” and “—” is

also formed. For this purpose each i-th element of the initial sample xi, i = 1, n from the total

population will be replaced with “+” if xi+1 > xi, and with “—” if xi+1 < xi, step to the next

element if x(i) = x̂med.

Let us consider the realisation of the criterion.

1. Formulation of null and alternative hypotheses.

H0: elements of the sample xi, i = 1, n are stochastically independent,

H1: elements of the sample xi, i = 1, n are not stochastically independent.

2. Assignment of confidence level α.

3. Formulation of critical statistics.

ψcr = ψ{ν(n), τ(n)}.

The limit distribution of ψcr statistics is bidimentional with particular ν(n) and τ(n) limit

distributions.
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Stock νev(n) τev(n)

AMAT 333 4

BRCD 325 6

CIEN 333 4

CSCO 324 6

DELL 319 5

INTC 331 3

JNPR 330 5

MSFT 310 3

ORCL 339 4

SUNW 320 3

Table 2: Results obtained with the rank test on independence of “ascending” and “descending”

series. In νev(n) column there are calculated values of the amount of series, in τev(n) column

there is the calculated value of the longest series length. The values of critical statistics for the

considered sample are: νcr = 324, τcr = 7.

4. Definition of upper and lower limit points

ψcr.u = νcr(n) =
1

3
(2n− 1)−

√
16n− 29

90
· u1−α

2
,

ψcr.l = τcr(n) =


5, if n 6 26

6, if 26 < n 6 153

7, if 153 < n 6 1170

where u1−α
2

is a fractile of normal distribution.

5. Evaluation of νev(n) and τev(n) statistics.

νev(n) is the quantity of series.

τev(n) is the length of the longest series.
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If the following conditions are satisfied simultaneously νev(n) > νcr(n),

τev(n) < τcr(n),

H0 hypothesis can be accepted with an error of the first kind α. Otherwise the elements

of the sample can not be stochastically independent.

This criterion catches monotonous and periodic shift of the estimation of the mean. It is a

more powerful criterion than the median based criterion of series.

2.8.3 Abbe’s criterion of stochastic independence

If sample xi, i = 1, n belongs to the normal total population it is better to use the successive

differences criterion of squares (Abbe’s criterion) to determine whether the elements of this

sample are stochastically independent or not. The decision to use this criterion is based on the

results of normality tests of the empirical data distribution which were carried out in the given

research. These results allow to speak about high degree of normality of the data considered.

Abbe’s criterion allows to find out a regular shift of the mean during the sample investiga-

tion.

Stock AMAT BRCD CIEN CSCO DELL INTC JNPR MSFT ORCL SUNW

ψev 1.336 1.626 3.603 1.397 1.891 1.865 6.926 7.291 2.156 10.81

Table 3: Calculated values of critical statistics for Abbe’s criterion. The value of the lower

critical point for the sample used is ψcr.l = 1.004.

The procedure of data checking with this criterion consists of the following steps.

1. Formulation of null and alternative hypotheses.

H0: sample elements xi, i = 1, n are stochastically independent,

H1: sample units xi, i = 1, n are not stochastically independent.

2. Assignment of a confidence level α.

3. Formulation of critical statistics.

ψcr = γ(n)
α =

q̂2(n)

σ̂2
,
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where

q̂2(n) =
1

2(n+ 1)

n−1∑
i=1

(xi+1 − xi)2,

σ̂2 is the unbiased estimation for the variance of a sample.

The limit distribution of critical Statistics γ
(n)
α is tabulated for each n 6 60. These data

can be found in tables of critical points of Abbe’s distribution for different values of α.

4. The definition of the lower critical point can be carried out in two ways.

If n > 60,

ψcr.l = 1 +
u1−α

2√
n+ 0.5 · (1 + u1−α

2
)2
,

where u1−α
2

is a fractile of the standard normal distribution.

If n 6 60 then ψcr.l should be found in statistical tables.

5. Evaluation of critical statistics

ψev =
q̂2(n)

σ̂2
.

The hypothesis about stochastic independence of the sample units is accepted under ψev >

ψcr.l, otherwise the elements of sample cannot be accepted as random and independent.

3 Portfolio risk estimation

Portfolio risk can be estimated in two ways: a) considering each stock included into the portfolio

separately; b) considering all of them in aggregate. That will correspond in some sense to a

Value-at-Risk approach, but with a division between two different portfolios: a general portfolio

and a current short-time portfolio.

In the first case, the risk of each stock should be calculated. Then, taking into account

the correlation between stocks, the risk of the whole portfolio is estimated. This is a difficult

problem largely because such correlations are not determined values.

In the simplest Gaussian case this method leads us to calculate the correlation matrix to

the n-th order, where n is the number of stocks. This matrix depends on the time and state of

the system considered .

Volatility of a portfolio takes the form

D(πt)[Vt] = [πS1
t , . . . , π

Sn
t ]Σt(S1, . . . , Sn)(πS1

t , . . . , π
Sn
t ),
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where Σ is a correlation matrix and πSit is the total number of stock Si at the moment t.

This formula can be dynamically calculated for n not greater than 20 stocks for the general

case, where we shall use some form of the ARCH-GARCH-EGARCH model.

It was decided to use the second approach for this reason. In the second case the portfolio

is represented as a generalized stock the price of which is averaged according to the shares of

the stocks, included into the portfolio.

This approach is quite good and can be improved for the dynamic portfolio case. One should

take into account possible changes in the portfolio. These changes are considered as components

of another portfolio, consisting of this generalized stock and some additional stocks (in short

or long positions) which are the result of the current days activity. In this case we are able to

make calculations in accordance with the first approach because the number of stocks is much

more lower than in the whole portfolio.

3.1 Value-at-Risk methodology of risk estimation

Profit earning is inseparably linked with risk. One of the basic positions of modern financial

theory is, that earning a higher profit is connected with a higher risk. It is intuitively clear to

everyone what risk is, but obtaining quantitative estimations of risk involves serious difficulties.

One of the primary issues of modern financial institutions is estimation of market risks that

arise due to fluctuations of stock prices, raw goods, exchange rates, interest rates etc. The

simplest measure of investor dependence on market risk is the value of portfolio capital change,

i.e. profits or losses arising due to asset prices movement. At present, the most common

methodology for market risk estimation is Value-at-Risk (VAR). VAR is a summary measure

of risk that compare risks of various portfolios (for example, of portfolios consisting of stocks

and bonds) and of various financial instruments (for example, forwards and options).

For the last few years VAR has became one of the most popular means of risk management

and risk control in companies of various types.

VAR is a statistical approach. The basic concept is the distribution of probabilities connecting

all possible values of changes in market factors with their probabilities. VAR methodology

has a number of doubtless advantages: it allows measurement of risk in terms of possible

losses related to the probabilities of their occurrence; it allows to measurement of risks with a

universal method in various markets; it allows aggregation of risks of separate positions into

a single value for the whole portfolio, taking into account the size of positions, volatilitie in
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the market and the duration positions are held. Thus, VAR is a really universal approach to

market risk measurement.

What is VAR? VAR is a statistical estimation of the maximum loss exposure of a financial

organizations portfolio, measured under the given distribution of market factors for the given

period of time for all cases, except for the given small number of situations.

Development and introduction of VAR models occurs in a very intensive way. In investment

companies and banks VAR methodology can be implemented in several business lines at the

same time.

• Internal market risks monitoring. Institutional investors can calculate and monitor the

values of VAR on several levels: aggregated portfolio, the asset class, the emitter, the contractor,

the trader/portfolio manager etc. From the monitoring point of view the precision of VAR

values estimation is of secondary importance. In this case the relative value of VAR is more

important than the absolute one, i.e. manager’s VAR or VAR of a portfolio compared to the

VAR of the model portfolio, the index, to another manager or to the same manager at previous

times.

• External monitoring. VAR allows creation of a representation of the market risk of a

portfolio without disclosing the information about the structure of the portfolio (which can be

very complex). Regular reports using VAR values can serve as one of the arguments that the

risk accepted by managers was reasonable.

• Hedge efficiency monitoring. VAR values can be used for determining the degree of

consistency of the hedging strategy. The manager can estimate the efficiency of the hedge

comparing VAR values for portfolioes with and without a hedge. If, for example, the difference

between these values is insignificant, there is a question of the expediency of the hedging or

whether the hedging is applied correctly.

• Analysis of possible trades. VAR methodology allows giving more freedom and autonomy

to managing personnel, because bureaucratic procedures connected with trading (especially

with derivative instruments) can be reduced. This is achieved by monitoring transactions using

VAR.

Thus, companies can use VAR values to create reports for managers, shareholders and

external investors, because VAR allows aggregation of every possible market risk into it a

single value having a monetary expression. Estimated risk can be calculated for different

market segments, marking out the most risky positions. VAR estimations can be used to

diversify capital holdings, to set limits and also to estimate the company’s activity. In some
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banks, an estimation of traders’ operations (performance) and also compensation is calculated

based on the rate of profitability per VAR unit.

3.1.1 Financial portfolio risk estimation

The modern investment portfolio can consist of tens of thousands of various financial instru-

ments inform various world markets. How should the risk of such a portfolio be considered?

Portfolio risk could be considered by calculating the distribution function of the portfolio

cost change during some period of time. This requires considering all possible scenarios of

developing market events by evaluating portfolio costs of each scenario.

Even if it could be measured, there is a problem comparing the risks of two different port-

folios. To compare their risks, each risk should be expressed by a single number. If a strictly

determined estimation of the risk could be obtained, it would be a real breakthrough for mon-

itoring of financial institutions activities. Unfortunately, it is impossible to obtain any precise

estimation of the risk as a scalar value due to potentially infinite number of possible scenarios

of an event developing. Therefore, when speaking about portfolio risk, one always means some

estimation (generally probabilistic) of the value of the risk.

It might seem that the modern theory of financial portfolio management answers the ques-

tion of what risk is and how to measure it. According to the theory, risk is a standard deviation

from the portfolio cost. Representation of a risk as a standard deviation has some serious faults

from a practical point of view:

Firstly, portfolio managers generally prefer to obtain risk information in terms of potential

real monetary losses, instead of in the form of a standard deviation;

Secondly, the standard deviation takes into account favourable and adverse changes of the

portfolio cost. If the distribution of change of the portfolio cost has a symmetric form, then

a standard deviation gives the correct value of risk, but a modern portfolio includes options

and similar financial instruments. The change of cost for such instruments is nonlinear with

respect to market prices. This results in asymmetry of changes of the portfolio cost distribution

function. Standard deviation gives an incorrect estimation of risk under this condition.

In conclusion, VAR methodology has been developed to represent information about the

investment portfolio risk with a single number.
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3.1.2 VAR definition

The exactly definition of VAR is formulated as follows.

Let the portfolio be fixed. VAR of a portfolio under given confidence level α and the given

period of positions holding t is defined as such value V , which provides a covering of possible

losses x of the portfolio holder for time t with probability α, i.e. P (x, V ) = α. From a probability

theory point of view VAR is the fractile α for given distribution. In other words, having

calculated VAR, it is possible to formulate the statement of the following type: “We are sure

with α% probability that the losses will be within VAR for the next N days”.

In general the problem of VAR calculation with the given parameters t (horizon of forecast-

ing) and α (confidential probability) has the following steps:

1. The current cost of the investment portfolio is determined as V0;

2. Portfolio cost in the time t we should define as Vt = V0 e
r;

3. Let us predict such r̃ that P(r < r̃)= α;

4. Let us obtain the worst variant of cost of portfolio cost Ṽt = V0 e
r̃, then V AR = V0 − Ṽt.

Speaking the language of mathematics V AR = V ARt,T is defined as the upper border of a

unilateral confidential interval

Probability(Rt(T ) < −V AR) = 1− γ,

where γ is the confident level, Rt(T ) is the rate of growth of the portfolio capital in an interval

[t, T ] under “a continuous way of interests charges”

Rt(T ) = ln(V (t+ T )/V (t)),

where V (t+ T ) and V (t) are values of the portfolio capital at the t+ T and t moments of time

accordingly. In other words, V (t+ T ) = V (t) eRr(T ).

It should be noted that R(T ) is a random variable and it is characterized by some probabilistic

distribution. VAR value is calculated from the distribution of increments as follows:

1− γ = FR(−V AR) =

∫ −V AR
−∞

fR(x)dx,

where FR(X) = Probability(R 6 x) is the distribution function of portfolio growth rates, fR(x)

is the density function for Rt(T ) distribution.

As itfollows from VAR definition, to calculate it, is necessary to know the structure of the

portfolio, the interval of time for which VAR is calculated, and the distribution function of the

portfolio cost change.
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Besides, it is necessary to determine the number of the base elements influencing VAR value.

First of all it is a probabilistic distribution of the market factors which directly influence the

portfolio assets price changes. It is clear that some statistics of each of these assets’ behaviour

through the time is necessary to construct the distribution. It is enough to estimate only the

volatility (i.e. a standard deviation) under the assumption that the logarithms of assets price

changes belong to the normal gaussian distribution with the mean equal to zero. However in

the real market, the assumption about the normality of Distribution does not work as a rule.

After setting up market factors distribution it is necessary to choose a confidence level, i.e.

a probability at which our losses should not exceed VAR. Then it is necessary to determine

the Position’s holding period during which the losses are estimated. Under some simplifying

assumptions it is easy to see, that VAR of a portfolio is proportional to the square root from

the position’s holding period. That is why it is enough to calculate only one-day VAR. Then,

for example, four-day VAR will be twice as much.

Besides if the portfolio contains complex derivative financial instrument (options, for exam-

ple), it is necessary to choose their pricing function depending on the parameters of the market.

At last, it is necessary to determine the correlations between various market factors.

Getting the information on the structure of a portfolio is not so trivial an issue, as it can

seem. Large companies have very complex portfolios including thousands of various financial

instruments which are in world markets, besides, as a rule these companies perform very active

trading operations. For this reason they face the problem of how to quickly get the information

on the current structure of a portfolio.

Another problem is the choice of the fixing time for the prices of assets included into the

portfolio. Trading sessions in the world markets have different closure time, it creates a problem

of choosing the price hich will be used to calculate the portfolio cost change. The closure time

of that market where basic assets of the company are concentrated is usually accepted as the

fixing time.

Having determined the structure of the portfilio and having chosen the desirable period of

time, it is necessary to determine the distribution function for the portfolio cost change.

3.1.3 Methods of VAR estimation

The example explaining VAR concept is given in figure 3. The curve in the figure is the density

function for the probabilities of profits and losses for the given portfolio and the positions’

holding period. The light part of the figure corresponds to the chosen confidence level (97,5%)
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in the sense that its area makes a 97,5% from the general area under the curve. VAR represents

the value of possible losses meeting the given confidence level.
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0VAR

Losses Profit

Figure 3: Distribution of the profit and losses for a portfolio with indication of VAR.

So after all the base elements have been marked, it is possible to address directly to Value-

at-Risk calculation.

There are three basic methods of the distribution function parameters evaluation: historical,

analytical and simulation ones.

Analytical method. The basic idea of the method consists in revealling the market factors

influencing the cost of a portfolio, and approximating the portfolio cost on the basis of these

factors. In other words the financial instruments which aggregate a portfolio, are divided into

elementary assets, as far as it is possible, in such a way, that changes of each one depend only

on one market factor. For example, the long-term coupon bond can be considered as a set of

bonds with different maturity dates.

Further the assumption about the form of market Factors distribution is made. Usually it

is supposed that the profitability of market factors submits to normal distribution. The mean

and variance of the data as well as the correlations between market factors are calculated on

the basis of historical data. Having estimated to some extend standard deviations of price

logarithms changes for each asset included into the portfolio, VAR should be calculated as

the production of standard deviations and the multiplier corresponding to the confidence level
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(for the confidence level of 97,5% the multiplier is equal to 1.96, for example). It is necessary

to know the correlations between the assets to calculate total VAR of the portfolio. The

distribution of profitability of a portfolio will be normal if the approximation is linear. One can

evaluate the distribution parameters for the whole portfolio, knowing the parameters of market

factors distributions. All the necessary parameters of normal distribution are well-known for

the majority of market factors and this is a serious advantage of the considered approach (see

http://www.jpmorgan.com/- Risk Metrics).

Example 1.

Let the portfolio consist of a thousand futures per a USA dollar with maturity date on

January, 15, 2013 and let the current futures price in some stock exchange be 6 s.u./dollars

(then the cost of all portfolio is 6 million s.u.). Let there also be some statistics about the

futures’ prices Fi for the last N days. Let us consider variables xi = ln Fi
Fi−1

which are the

logarithms of one-day changes of the futures’ prices. Let xi be a set of random variables having

normal gaussian distribution with the mean equal to zero. Then it is possible to estimate its

volatility (i.e. a standard deviation) according to the known formula σ =
√

1
N

∑N
i=1 x

2
i . Let us

assume that σ takes on a value of 0,3%. Then VAR value for the given portfolio, corresponding

to a 97,5% confidence level and one-day positions’ holding period, will be equal to:

VAR = 1,96 ·σ·6 000 000 s.u. = 35 280 000 s.u.

In the given example a normal distribution was chosen only for the illustrative purposes by

force of calculation simplicity. In practice, as it is known, the increments of the asset prices

have heavier “tails” in comparison with the normal distribution, i.e. in reality there are more

”extreme” events on the market then it would be possible to expect at normal distribution. VAR

by its nature, deals with the prediction of events from the “tails” of distribution. Therefore using

Pareto-like distributions seems to be more consistent. For these distributions, the probability

of large deviations is given by the following expression:

Probability(R 6 x)=FR(x) ≈ ax−α under x→∞.

Here a > 0 is a constant, α is a so-called “tail” index.

Apart from Pareto-like stable distributions, it is possible to use distributions belonging to

the class of generalized hyperbolic distributions.

It should be noted that the estimation of VAR obtained with the help of analytical method

most closely coincides with the estimation of risk offered by the modern portfolio theory.

The analytical method is simple in realization and allows to obtain VAR estimation very

quickly (it is possible, even in real-time mode) almost on any computers. But the quality of the
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estimation worsens if there is an increase in the share of instruments with non-linear payment

function in the portfolio. Besides the necessity to make an assumption about the form of the

distribution for base assets is a serious fault of this method.

Historical method. The historical method implies research of the portfolio cost change

during the previous historical period.

For VAR calculation a database is created for some predetermined historical period of price

values for the financial instruments which are included into the portfolio (or the appointed

market factors, if a portfolio is approximated). After that it is necessary to calculate the

instruments’ price changes for the period of time which will be used for VAR calculation and

to obtain the appropriate values of the portfolio cost change. Then it is necessary to arrange

the obtained data to construct the histogram of the portfolio cost changes distribution and to

find VAR value corresponding the to chosen value of probability.

The procedure of VAR calculation is as follows. A time period is chosen (100 trading days,

for example) during which relative changes of the prices for all the assets included into today’s

portfolio, are traced. Then, for each of these changes a possible change of the portfolio cost

is calculated, then 100 obtained numbers are sorted out by decrease. The number taken with

the opposite sign corresponding to the chosen confidence level (for example, for 99% level it is

necessary to take the value with number 99), will represent the VAR of a portfolio.

This method has two main advantages: firstly there is no any necessity to know the form

of the distribution function of portfolio market factors, secondly it is a simple in realization.

There are no any difficulties with the portfolios which include options and financial instruments

of the same type.

One of the faults of the method in question is the necessity to do big work on gathering

and processing historical data. Besides an estimation of possible changes of the portfolio cost is

limited to a set of previous historical changes. The absence of the sufficient amount of historical

data is a typical problem of the given method. To obtain more exact estimation of VAR, it is

necessary to use as much data as it is possible, but using too old data may lead to estimating

the risk on the basis which does not correspond to the current state of market.

Monte Carlo method. This method consists in modelling possible changes of a portfolio

cost under some assumptions. The basic market factors influencing the cost of a portfolio are

determined. Then the summary distribution of these factors is constructed somehow, using
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historical data, for example, or the data based on any scenario of economy development. After

that a big number of possible scenarios of the situation development are modelled, and the

change of the portfolio price is calculated for each scenario of modelling. Further a histogram

of the obtained data should be constructed and the value of VAR evaluated.

In contrast to historical modelling, in the Monte Carlo method The assets price changes

are generated in a pseudo-random way according to predetermined parameters. The simulated

distribution can be almost voluntary defined, and the number of scenarios can be rather big

(up to tens of thousands). In other respects the method is similar to historical modelling.

The Monte Carlo method is notable for its high accuracy and suitability almost for any

portfolios, but its implementation demands a certain mathematical base of the experts and

sufficient computer resources.

This method has several advantages. It does not use any concrete model of parameters’

definition ant it can be easy recustomized according to the economic forecast. The method

does not model the final cost of a portfolio, but the whole scenario of a situation development.

This circumstance allows to trace the change of the portfolio cost depending on how situation

develops.

The fault of the ethod is its slow convergence that results in essential time and computing

expenses.

Concrete models of VAR estimation are based on various combinations of considered meth-

ods.

Generally speaking, it is difficult to recommend one of the methods of VAR calculation. It

is necessary to take into account the macroeconomic situation, and also the purposes and issues

of the concrete organization when choosing any method.

3.1.4 The faults of VAR

A common fault of VAR is that all the models, irrespectively of the calculation methods used,

use historical data, and under fast changing market conditions it will give a sufficient delay.

For example, if volatility has a spasmodic behavior changes VAR can take these changes into

account only in some lag, but up to this moment the estimation of VAR will be incorrect.

What is not taken into account when estimating VAR is such an important characteristic

of markets as liquidity. At some moments it can result in serious difficulties in changing the

portfolio structure to reduce the risk.

This or that model is used for VAR the estimation, and it means the presence of a modelling
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risk in calculations. Therefore it is necessary to periodically check the adequacy of the model

used.

VAR estimates the probability of occurrence of losses which exceed a certain level, it means

that it estimates the “weight of the tail” of distribution, but it does not say anything about

the possible value of these losses. Therefore in addition to VAR it is recommended to study

the behaviour of a portfolio in stressful situations to estimate the “length of the tail” of the

distribution.

The result of all these factors is that VAR works well in case of stable conditions in the

markets and ceases to display the value of risk adequately if dramatic changes occur in the

markets. It is necessary to remember that VAR is just one of tools in risk management, but it

is not a universal method of estimation.

In conclusion it is desirable to note that VAR methodology is not a panacea from financial

losses. It just helps companies to estimate risks and to decide whether these risks are accepted

or just desirable to be accepted. VAR can and should be used in addition to other methods of

risk analysis such as, for example, Shortfall-at-Risk (SAR) when one is interested in not just

the boundary size of the capital, below which a loss could be expected with a certain share of

probability, but also in the value of this loss.

3.2 VWAP of a portfolio

It would be logical to define the price and VWAP of a portfolio as follows:

p =
n∑
i=1

αipi,

where α1 + · · ·+αn = 1, αi is the share of a stock in portfolio, and pi is the price of this stock.

VWAP =
n∑
i=1

αi vwapi,

where vwapi is VWAP of i-th stock.

As VWAP value of a portfolio is a linear composition of VWAP values of separate stocks,

its distribution has the same type as those of its summands.

Statistical tests performed above showed that our data seem to belong to the normal total

population, however, not all of the stocks considered satisfy the normal distribution with a

sufficient confidence level, hence the statement about the normality of the whole portfolio has

to be checked. For this purpose χ2 and Kolmogorov-Smirnov’s criterions of consent were used,

the results of The testing are submitted in the table 5.

38



If the confidence level is sufficient, it is possible to accept the assumption of normality for

successive price increments of the portfolio VWAP distribution and to use brownian motion for

the volatility estimation. Otherwise it is necessary to use another methods of σ estimation, for

example, those described in section 2.

Further we shall assume for all the examples, that the confidence level allows to accept a

hypothesis about the normality of the distribution. Besides, it is supposed that volatility σ is

a constant value, though many researches showed, that it is not absolutely so for the empirical

data.

3.3 Portfolio risk estimation

VWAP for the whole day is summed up from hourly values arcwise. For this reason it is

possible to make a rough assumption, that the normality of VWAP hourly value increments

results in normality for VWAP daily increments. This fact is also proved with the χ2 and

Kolmogorov-Smirnov’s criterions of consent.

Successive increments of VWAP logarithms are a wiener process:

VWAPt = VWAP0 · e(µ−σ
2

2
)t+σWt

Using the rule of triple sigma1, let us define the lower border of this value as follows:

VWAPt = VWAP0 · e(µ− 9σ2

2
)t−3σ·

√
t

It is supposed, that the portfolio is sold by equal parts in n days, consequently its risk is

(in percents) estimated with the formula:

R = (1−

1
n
·
n∑
i=1

VWAPi

VWAP0

) · 100, where VWAPi = VWAP0 · e(µ− 9σ2

2
)i−3σ·

√
i.

The examples of risk estimation for various portfolios consisting of some stocks which belong

to Nasdaq100 at n=5, are submitted in table 5, and also in diagrams in Appendix 2.

The procedure of risk estimation was the following. The distribution parameters were

estimated in some predetermined historical period of data, and then with the help of the

1This rule is independent of probability distribution and in general case is equal to the assert that probability

P
{
|E[ξ]− ξ| > 3

√
D[ξ]

}
is lower than 1/9. It can be shown that for the Normal distribution this probability not greater than 1/100.
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Portfolio AMAT BRCD CIEN CSCO DELL INTC JNPR MSFT ORCL SUNW

No.1 0.070 0.120 0.042 0.199 0.202 0.109 0.060 0.032 0.142 0.021

No.2 0.093 0.118 0.036 0.060 0.117 0.099 0.109 0.020 0.157 0.057

No.3 0.081 0.166 0.163 0.130 0.108 0.128 0.092 0.025 0.067 0.036

No.4 0.027 0.116 0.121 0.068 0.096 0.100 0.120 0.095 0.033 0.120

No.5 0.026 0.135 0.187 0.119 0.088 0.107 0.095 0.119 0.033 0.187

Table 4: Shares of stocks in portfolios

procedure described above lower and upper bounds of estimation were evaluated. After these

procedures the actual trajectory of the price was considered for the period of time for which

risk estimations were obtained.

In general case the independence of VWAP increments is sufficient for use of the similar

procedure for lower and upper board calculation:

R = (1−

1
n
·
n∑
i=1

VWAPi

VWAP0

) · 100, where VWAPi = VWAP0 · e(µ̃)i−3σ̃·
√
i,

and µ̃ = E[ln(∆VWAPi)] is an expectation of the VWAP increment ln(∆VWAPi) and

σ̃ =
√

D[ln(∆VWAPi)] is a standard deviation of the VWAP increment ln(∆VWAPi).

4 Conclusion

The present research shows that using VWAP as a risk estimation criterion strongly simplifies

the procedure of estimation. The examples considered obviously show that the offered approach

gives a good estimation of risk, even with quite rough assumptions of normality for successive

VWAP increments and a triple sigma rule.

The assumption of normality is not crucialhere, because a triple sigma rule is independent

of probabilitydistribution, so we can use it in other cases.

Also mentioned was a very important problem connected with market collapse from sale of

an enormous quantity of shares. The correct estimation of market stability is crucial not only for

risk estimation, but also for the technical realization of selling shares at VWAP. Accomplishing

sale of shares at VWAP can be strongly dependent on the quantity of shares to be sold in a set

40



ID of Normality Evaluation of risk Evaluation of actual loss

a portfolio α χ2 I II III IV I II III IV

No.1 0.9945 2.04 -12.47 -12.15 -12.37 -12.43 10.52 -2.75 -5.66 2.89

No.2 0.9903 8.07 -13.23 -13.07 -13.40 -13.25 11.04 -7.14 -2.32 -0.76

No.3 0.8368 3.23 -14.08 -14.21 -14.51 -14.11 2.80 -7.01 -2.70 -0.74

No.4 0.9874 3.15 -12.6 -12.76 -13.08 -12.85 -0.73 -6.85 -1.02 -3.50

No.5 0.9926 5.28 -12.49 -12.96 -13.01 -12.84 -2.14 -4.79 1.25 -4.60

Table 5: Portfolio risk estimation. α and χ2 columns consist of the confidence level obtained

from the Kolmogorov-Smirnov’s criterion and the results of χ2 criterion implementation ac-

cordingly. The corresponding estimations for risk at various moments of time are represented

in the subsequent four columns. The actual values of loss, given for the comparison with the

corresponding estimations of risk are represented in the last four columns.

period of time.

In general, the assumed risk-estimation procedure looks as follows:

• Analysis of the distribution properties and VWAP process construction.

• Generalized stock calculation and risk estimation on a portfolio basis at the end of a

trading day.

• Use of this generalized stock as an ordinary stock for short-time portfolio risk estimation

on the next trading day.

• Combining the cumulative portfolio at the end of a trading day.
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Appendix 1
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Figure 4: Distribution function for daily increments of VWAP logarithms, obtained from top

of the book on Nasdaq for Intel.
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Figure 5: Normal probability paper for daily increments of VWAP logarithms: Intel on Nasdaq.
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Figure 6: Empirical density function for daily increments of VWAP logarithms in comparison

with normal density: Intel on Nasdaq.
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Appendix 2
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Figure 7: Actual movement of VWAP through the period of risk estimation. Lower and upper

bounds of risk estimation are represented with dark blue color.
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Figure 8: Risk estimation in dynamics. Each point on the time axe has three values: the lowest

is the lower bound of risk estimation for this moment of time with period of estimation equal

to five days; the highest point is the upper bound of the profit (with regard to the initial cost

of the portfolio) which can be earned in the same period of time; the middle point shows the

actual change of the portfolio cost (in percents) to the end of the estimation period. The risk

was reestimated each day during a 25-day period.
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