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Abstract

The recently finalized Basel II Capital Accord requires banks to adopt a procedure to esti-
mate the operational risk capital charge. Under the Advanced Measurement Approaches, that
are currently mandated for all large internationally active US banks, require the use of historic
operational loss data. Operational loss databases are typically subject to a minimum recording
threshold of roughly $10,000. We demonstrate that ignoring such thresholds leads to biases
in corresponding parameter estimates when the threshold is ignored. Using publicly available
operational loss data, we analyze the effects of model misspecification on resulting expected
loss, Value-at-Risk, and Conditional Value-at-Risk figures and show that underestimation of
the regulatory capital is a consequence of such model error. The choice of an adequate loss
distribution is conducted via in-sample goodness-of-fit procedures and backtesting, using both
classical and robust methodologies.
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1 Introduction

The three major sources of risks in financial institutions are market risk, credit risk, and operational
risk. While the first two have been well understood, the research on operational risk is still a growing
area. The scope of risks grouped under operational risks is quite large: the Basel Capital Accord
defines operational risk as the risk of loss resulting from inadequate or failed internal processes,
people and systems, or from external events (BCBS, 2006a). Examples of large operational losses
due to unauthorized trading, fraud, and human errors include the Orange County (USA, 1994),
Barings (Singapore, 1995), Daiwa (Japan, 1995), Société Générale (France, 2008), losses due to
natural disasters include those due to hurricanes Andrew and Katrina (USA, 1992 and 2005),
terrorist attack of September 11, 2001, to name a few. Arguably, while the recent financial crisis is
commonly credited to credit risk, many of its roots can be traced to operational risk. Specifically,
the failings of prominent mortgage and financial service companies could be averted had lending
practices been founded upon forward-looking market expectations based on fundamentals rather
than short-term market movements. As a result, years of improper lending practices led to the
mortgage crisis around 2007 and subsequent bailout of a series of U.S. financial institutions by the
U.S. Government and have brought to light the grave consequences of inadequate business practices
and model errors – yet another type of operational risk.

The significance of operational risk as a major contributor to banks’ and insurance companies’
risk positions is increasingly recognized by the industry and regulators. Current estimates suggest
that the allocation of total financial risk of a bank is roughly 60% to credit, 15% to market and
liquidity and 25% to operational risk (Jorion, 2000).1 Under the Basel II Capital Accord (BCBS,
2001a, 2006a), each bank is required to adopt a methodology to determine the operational risk
capital charge to account for unexpected losses. The U.S. banks are mandated to use the Advanced
Measurement Approaches. Under the Loss Distribution Approach (LDA) – one of such approaches
– banks compute separately the loss severity and frequency distribution functions for each business
line and risk type combination, over a one year period. The total capital charge is then determined
as the sum2 of one year Value-at-Risk (VaR) measures with the confidence level 1−α (e.g., α=0.1%),
across all combinations, based on the compounded losses.

A number of modeling issues remain in modeling operational risk. One problem is related to
internal operational loss data. Data recording is a subject to lower recording thresholds, which for
internal databases at set at roughly $10 thousand BCBS (2003).3 We refer to such data that are not
recorded as non-randomly missing data, and to the recorded data as left-truncated and incomplete.
If such data truncation is unaccounted for, model errors can carry significant material consequences.
“The choice of loss collection thresholds can significantly affect the calculation of expected loss and,

1Cruz (2002) suggests 50%, 15% and 35%, for credit, market and operational risks, respectively. In the 2008 annual
report of JP Morgan Chase, credit risk capital accounted for 63%, market risk capital for 17.5%, and operational risk
for 11% of total regulatory capital.

2Summing across business line and event types assumes perfect correlation between different cells. In more recent
Basel II guidelines (BCBS, 2006a), it is recommended that banks use appropriate dependence structures that exist
between the cells to produce the aggregate risk capital.

3The 2002 Quantitative Impact Study (QIS) revealed that only 5 out of 89 banks that participated in the study
had minimum cut-off thresholds below ¿10 thousand, 59 banks (or 66% of banks) used a threshold of around ¿10
thousand, and 13 firms (or 15%) had thresholds exceeding that amount (BCBS, 2003). There could be various reasons
for truncation. First, data recording is costly. Second, data entry errors that can occur while recording a large number
of small losses result in additional operational losses for a firm. Third, smaller losses are easier to hide while larger
losses must be reported, which results in smaller losses being under-represented from a complete database if all losses
were recorded. And fourth, small frequent losses are perceived as routing and immaterial, so banks often opt to leave
them unrecorded.
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to some extent, the shape of the estimated loss distribution and estimates of unexpected loss.”
(BCBS, 2006b). Recent guidelines by the Basel Committee make a clear recommendation that
data truncation be adequately accounted for.

Chernobai, Menn, Trück and Rachev (2006) showed that, if the truncation is ignored, fitting
unconditional distribution to the observed (incomplete) losses would lead to biased estimates of the
parameters of both severity and frequency distributions. The magnitude of the effect is dependent
on the threshold level and the underlying loss distribution. Under the compound Poisson process
model, the severity and frequency distributions of the operational risk are inter-related: while
severity of recorded data is biased toward higher losses, for as long as the fraction of missing
data (under the truncation point) is estimated to be non-zero, the frequency parameter(s) requires
a proportional increase. As a result, the resulting VaR measure would be under-estimated. In
this paper, we extend the theoretical framework of Chernobai, Menn, Trück and Rachev (2006)
to apply it to real operational loss data and test empirically the implications of the model error
associated with misspecified severity and frequency distributions on the estimates of operational
risk regulatory capital.4

The aim of this paper is two-fold. We analyze the effects of missing data on loss severity and fre-
quency distributions, and then examine the impact of model misspecification on the operational risk
capital charge, determined by two alternatives: the VaR and Conditional VaR (CVaR) measures.
The paper is organized as follows. Section 2 explains the truncation problem and discusses the
methodology for the correct estimation of the severity distribution and the necessary adjustment
to the frequency of loss events. Section 3 presents the results of empirical study using 1980-2002
publicly available operational loss data and examines the effects of misspecified and correctly de-
fined distributions on the capital charge, and then carries out goodness-of-fit tests to determine
an optimal law for the loss severity. We show that ignoring the missing data leads to misleading
(under-estimated) VaR estimates. Section 4 provides a robustness check in which we estimate the
operational risk regulatory capital using the principle of robust statistics. Section 5 concludes and
states final remarks.

2 Compound Model for Operational Risk

2.1 Compound Poisson Process Model

Following the recommendation by the Basel Committee, we assume that the aggregated operational
losses follow a stochastic process {St}t≥0 over the time interval 4t expressed by the following
equation:

St =
Nt∑

k=0

Xk, Xk
iid∼ Fγ , (2.1)

in which the loss magnitudes are described by the random sequence {Xk} assumed to follow the
distribution function (cdf) Fγ that belong to a parametric family of continuous probability distribu-
tions, and the density fγ , and the counting process Nt is assumed to take a form of a homogeneous
Poisson process (HPP) with intensity λ > 0 or a non-homogeneous Poisson process (NHPP) with
intensity λ(t) > 05. Depending on the distribution, γ is a parameter vector or a scalar. For sim-

4A similar model was applied by Chernobai, Burneçki, Rachev, Trück and Weron (2006) to the natural catastrophe
insurance model, where it is shown that the model misspecification of the claims leads to serious under-estimation of
the ruin probabilities.

5The case of a sinusoidal rate function is considered in Chernobai, Burneçki, Rachev, Trück and Weron (2006).
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plicity, we would refer to it as a parameter throughout the paper. We assume that the distribution
family is sufficiently well-behaved so that γ can be estimated consistently by Maximum Likelihood
(MLE). To avoid the possibility of negative losses we restrict the support of the distribution to the
positive half-line R>0. Representation (2.1) assumes independence between frequency and severity
distributions. The cdf of the compound Poisson process is given by:

P (St ≤ s) =

{ ∑∞
n=1 P (Nt = n) Fn∗

γ (s) s > 0

P (Nt = 0) s = 0
(2.2)

where Fn∗
γ denotes the n-fold convolution with itself.

In practice, model (2.1) can be used to determine the required capital charge imposed by
regulators. It is measured as the (1− α)th quantile of the cumulative loss distribution (2.2) over a
one year period, that defines VaR. VaR4t,1−α for the tolerated risk level α and the time interval of
length 4t (generally α = 1% − 5% and 4t is one year) is defined as the solution of the following
equation:

P (St+4t − St > VaR4t,1−α) = α (2.3)

and the CVaR6 is defined by:

CVaR4t,1−α : = E [St+4t − St | St+4t − St > VaR4t,1−α]

=
E [St+4t − St ; St+4t − St > VaR4t,1−α]

α
. (2.4)

Given a sample x = (x1, x2 . . . , xn) containing n losses which have occurred during some time
interval 4t = T2−T1, under the imposed assumptions on the structure of Fγ , the task of estimating
λ and γ can be performed with the MLE principle (or in case of a NHPP, λ(t) is estimated by
directly fitting a deterministic function):

λ̂MLE(x) =
n

4t
and γ̂MLE(x) = arg max

γ

n∑
k=1

log fγ(xk) (2.5)

The task of operational loss data analysis is complicated by the presence of missing data that fall
to the left of the left truncation point (minimum collection threshold). The estimates in (2.1)
would be misleading in the presence of truncation. The question addressed in subsequent analysis
is whether ignoring the missing data has a significant impact on the estimation of the frequency
parameter (λ(t)) and the severity parameter γ. From the statistical viewpoint, ignoring of non-
randomly missing data would lead to a bias in all estimates. However in practical applications a
possible reason to why such thresholds are ignored would be an argument saying that since the
major bulk of losses is in excess of the threshold then the small losses can not have a significant
impact on the operational VaR that is determined by the upper quantiles of the loss distribution.
This paper presents empirical evidence to disprove the argument. In the following section we
review the methodology for consistent estimation of loss and frequency distributions, as suggested
in Chernobai, Menn, Trück and Rachev (2006).

2.2 Estimation of Complete-Data Severity and Frequency Distributions

In the presence of missing data, we conclude that the observed operational losses follow a truncated
compound Poisson process. We follow similar notations to those in Chernobai, Menn, Trück and

6CVaR is also called Expected Tail Loss (ETL) or Expected Shortfall (ES).
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Rachev (2006). The available data set collected in the time interval [T1, T2] is incomplete due
to the non-negative pre-specified thresholds u that defines a partition on R>0 through the events
A1 = (0, u) and A2 = [u,∞). Realizations of the loss distribution belonging to A1 will not enter
the data sample – neither the frequency nor the severity of losses below u are recorded (missing
data). Realizations in A2 are fully reported, i.e. both the frequency and the loss amount are
specified (observed data). The observed sample is of the form z = (n,x), where n is the number
of observations in A2 and x are the values of these concrete observations. Given that the total
number of observations in the complete sample is unknown, one possible joint density of z (with
respect to the product of counting and Lebesgue measures) consistent with the model specification
in Equation (2.1), is given by the following expression:

gλ,γ(z) =
(4t λ̃)n

n!
e−4t λ̃ ·

n∏
k=1

fγ(xk)
qγ,2

, (2.6)

where 4tλ is replaced with Λ(t) for a NHPP, and qγ,j denotes the probability for a random re-
alization to fall into set Aj , j = 1, 2, observed intensity λ̃ := qγ,2 · λ and 4t := T2 − T1 is the
length of the sample window. In the representation (2.6), the Poisson process Ñt of intensity λ̃ (or
λ̃(t)) that counts only the observed losses exceeding in magnitude u can be thus interpreted as a
thinning of the original process Nt of intensity λ (λ(t)) that counts all events in the complete data
sample. The maximization of the corresponding log-likelihood function with respect to λ (for the
HPP case) and γ can be divided into two separate maximization problems, each depending on only
one parameter:

γ̂MLE = arg max
γ

log gγ(z) = arg max
γ

log

(
n∏

k=1

fγ(xk)
qγ,2

)
, (2.7)

λ̂MLE = arg max
λ

log gλ,γ̂MLE
(z) =

n

4t · qγMLE,2
. (2.8)

The MLE estimation of the unknown parameter γ can be done in two ways: performing direct
numerical integration or using the two-step Expectation-Maximization algorithm, developed by
Dempster et al. (1977). Expectation-Maximization algorithm has been used in a variety of appli-
cations such as probability density mixture models, hidden Markov models, cluster analysis, factor
analysis, survival analysis. References include McLachlan and Krishnan (1997), Meng and van Dyk
(1997), Wulfsohn and Tsiatis (1997), DeCanio and Watkins (1998), among many others, and in the
framework of the operational risk modelling in Chernobai, Menn, Trück and Rachev (2006), Bee
(2005).

2.3 Implications of Data Misspecification on the Operational Risk Capital Charge

The Basel Capital Accord requires banks to provide operational risk capital charge that would
cover the unexpected losses. At the same time they suggest using VaR for computing the capital
charge. Some confusion arises from such definition of the capital charge, because providing the
capital charge for the unexpected losses would mean that the expected aggregated loss (EL) has to
be subtracted from VaR. We therefore analyze the impact of data misspecification on all relevant
components - aggregated expected loss, VaR, and also CVaR.7

7It is also notable that EL does not exist for some very heavy-tailed distributions that possess an infinite mean.
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For a compound Poisson process, the aggregated expected loss is computed as a product of the
expected frequency and loss distributions:

ES4t = EN4t · EX. (2.9)

VaR4t,1−α was previously defined in Equation (2.3). We fix a tolerated risk level α and a time
horizon of length 4t - the Basel Committee suggests to use 4t = 1 year (BCBS (2001b)), and
α e.g. 0.1%. By definition, VaR equals the capital charge which must be maintained in order
to protect against potential operational losses in 4t from now that can occur with probability
(1− α). Generally no closed-form expression for the cumulative loss distribution is available. The
upper quantiles have to be determined numerically through approximations such as the recursive
Panjer-Euler scheme, FFT inversion of the characteristic function or simulation (we use the Monte
Carlo method in this paper). For the special case of a sub-exponential loss distributions F ∈ S,
such as Lognormal, Pareto and the heavy-tailed Weibull – relevant in the context of operational
risk modelling – the tail of the compound process is approximated by Embrechts, Klüppelberg and
Mikosch (1997):

P (S4t > s) ∼ EN4t · P (X > s), s →∞. (2.10)

For an example when the losses X follow a Lognormal(µ, σ) distribution, combining Equations (2.8)
and (2.7) with (2.3) and (2.10) results in the following expected aggregated loss and approximate
VaR estimates:

ES4t = λ̂MLE4t · exp
{

µ̂MLE +
σ̂2

MLE

2

}
, (2.11)

V̂aR4t,1−α ∼ exp
{

µ̂MLE + σ̂MLE Φ−1

(
1− α

λ̂MLE4t

)}
(2.12)

for the HPP case, with λ̂MLE4t is replaced by Λ̂(4t) for the NHPP case, where ϕ(·) and Φ(·)
denote the density and the distribution function, and Φ−1(·) denotes the quantile of a standard
Normal distribution. A closed-form expression for CVaR exists only for Gaussian loss severity. If
the missing data is ignored in the estimations of loss severity and frequency, then for the Lognormal
example the bias of the parameters can be expressed analytically as:

E λ̂observed = λ ·
(

1− Φ
(

log u− µ

σ

))
,

bias(λ̂observed) = −λ · Φ
(

log u− µ

σ

)
(2.13)

< 0,

E µ̂observed = E

(
1
n

∑
log Xk |Xk > u

)
= µ + σ ·

ϕ
(

log u−µ
σ

)
1− Φ

(
log u−µ

σ

)
,

bias(µ̂observed) = σ ·
ϕ
(

log u−µ
σ

)
1− Φ

(
log u−µ

σ

) (2.14)

> 0,
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µ0 = 4 µ0 = 5 µ0 = 6.5

σ0 = 1.5 0.48 0.23 0.04
σ0 = 2 0.48 0.29 0.10
σ0 = 2.7 0.49 0.34 0.17

Table 1: Fraction of missing data, Fγ0(u), for the Lognormal(µ0, σ0) example with nominal thresh-
old of u = 50.

E σ̂2
observed = E

(
1
n

∑
log2 Xk − µ̂2

observed |Xk > u

)

= σ2

1 +
log u− µ

σ
·

ϕ
(

log u−µ
σ

)
1− Φ

(
log u−µ

σ

) −
 ϕ

(
log u−µ

σ

)
1− Φ

(
log u−µ

σ

)
2
 ,

bias(σ̂2
observed) = σ2

(
log u− µ

σ
·

ϕ
(

log u−µ
σ

)
1− Φ

(
log u−µ

σ

) −
 ϕ

(
log u−µ

σ

)
1− Φ

(
log u−µ

σ

)
2)

< 0 since log u small, (2.15)

where in the first Equation (2.13) λ is replaced by λ(t) for the NHPP case. Figure 1 gives an
illustration to the biases of the three parameters for a wide range of initial (complete-data) true
values of µ and σ. The distances between the ratios of the estimated parameters to the true
parameters, represent the relative biases for each case. For the example, a threshold level of
H = 50 in nominal value was considered, which corresponds to the following cutoff levels: For
the same example, Figure 2 demonstrates the biases (represented by the ratios) of the estimated
fractions of missing data in the ‘naive’ and conditional scenarios. The fraction being equal to one
indicates the absence of bias. Combining (2.12) and replacing the estimates for µ and σ with their
expectations from (2.14) and (2.15), we obtain an approximate estimate of expected aggregated
loss and VaR under the data misspecification:

ES4t = (λ + bias(λ̂obs)
)
· exp

{
µ + bias(µ̂obs) +

(
σ + bias(σ̂obs)

)2
2

}
, (2.16)

< true ES4t,

V̂aR4t,1−α ≈ exp

{
µ + bias(µ̂obs) +

(
σ + bias(σ̂obs)

)
· Φ−1

(
1− α(

λ + bias(λ̂obs)
)
4t

)}
(2.17)

< true VaR4t,1−α,

with appropriate adjustments for a NHPP case. The direction of the last inequality (it also holds
for CVaR) generally depends on the threshold u and the underlying distribution. For practical
purposes in the context of operational risk, the “<” inequality is valid in general cases Chernobai,
Menn, Trück and Rachev (2006). Figure 3 illustrates the biases (represented by the ratios) of the
expected aggregated loss, VaR and CVaR figures, under the ‘naive’ and conditional scenarios, for
λ = 100 example. We note that the value of λ has no effect on the ratio of the expected loss, that
follows directly from Equation (2.16), and increase of λ to 150, 200 or more has a very negligible
impact (bias increases) on the biases of VaR and CVaR (figures are omitted here).
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Figure 1: Ratios of estimated parameters to the true (complete-data) parameter values, for the
Lognormal example, u = 50. (a) µ, ‘naive’; (b) µ, conditional; (c) σ, ‘naive’; (d) σ, conditional; (e)
λ.
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Figure 2: Ratios of estimated fraction of missing data (Q) to the true (complete-data) fraction, for
the Lognormal example, u = 50. (a) F (u), ‘naive’; (b) F (u), conditional.

(a)

1.5
2

2.5

4

5

6

0
0.2
0.4
0.6
0.8

1
1.2

σ
0

Q
naive

/Q
0
 ratio. Initial Threshold=50

µ
0

Q
na

iv
e / 

Q
0

(b)

1.5
2

2.5

4

5

6

0
0.2
0.4
0.6
0.8

1
1.2

σ
0

Q
cond

/Q
0
 ratio. Initial Threshold=50

µ
0

Q
co

nd
 / 

Q
0

3 Application to Operational Risk Data

3.1 Purpose of Study and Data Description

In this section we apply the model to real operational risk data, obtained from Zurich IC Squared
(IC2) FIRST Database of Zurich IC Squared (IC2), an independent consulting subsidiary of Zurich
Financial Services Group. The external database is comprised of operational loss events throughout
the world. The original loss data cover losses in the period 1950-2002. A few recorded data points
were below $1 million in nominal value, so we excluded them from the analysis, to make it more
consistent with the conventional threshold for external databases of $1 million. Furthermore, we
excluded the observations before 1980 because of relatively few data points available (which is most
likely due to poor data recording practices). The final dataset for the analysis covered losses in US
dollars for the time period between 1980 and 2002. It consists of five types of losses: “Relationship”
(such as events related to legal issues, negligence and sales-related fraud), “Human” (such as events
related to employee errors, physical injury and internal fraud), “Processes” (such as events related
to business errors, supervision, security and transactions), “Technology” (such as events related to
technology and computer failure and telecommunications) and “External” (such as events related
to natural and man-made disasters and external fraud). The loss amounts have been adjusted for
inflation using the Consumer Price Index from the U.S. Department of Labor. The numbers of
data points of each type are n =849, 813, 325, 67, and 233, respectively.

We would like to point out, that since the data set is external, the estimates of the parameters
and VaR and CVaR values are not applicable to any particular bank. The purpose of the empirical
study is to apply the model proposed in Section 2 and demonstrate the results, and we recommend
to the risk managers to apply the technique to their internal databases.

In the empirical study we focus on two scenarios. The first scenario we refer to as a ‘naive’
approach in which no adjustments to the missing data are made to the data. The second scenario
is the refined approach in which the losses are modelled with truncated (conditional) distributions,
given that the losses are larger than or equal $1 million, and the MLE estimates are obtained
according to the Equation (2.8), and the frequency function’s parameters of the Poisson counting
process are adjusted according to the Equation (2.7).
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Figure 3: Ratios of estimated 1-year EL, 95% VaR and 95% CVaR to the true (complete-data)
values, for the Lognormal example, u = 50, λ = 100. (a) EL, ‘naive’; (b) EL, conditional; (c)
VaR0.95, ‘naive’; (d) VaR0.95, conditional; (e) CVaR0.95, ‘naive’, (f) CVaR0.95, conditional.
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3.2 Operational Frequency Distributions

We consider two types of a Poisson process: a homogeneous and a non-homogeneous Poisson
processes, with cumulative intensity λ4t for the HPP, and the cumulative intensity Λ(t) for the
NHPP. For this particular data set, visual inspection (Figures 4 and A1) of the annually aggregated
number of losses suggests that the accumulation is somewhat similar to a cdf-like process. We hence
consider two following fitted cubic functions for the NHPP, each with four parameters:

1. Cubic I: a Lognormal cdf-like process of form Λ(t) = a +
b exp

{
− (log t−d)2

2c2

}
√

2πc
;

2. Cubic II: a log-Weibull cdf-like process of form Λ(t) = a− b exp
{
−c logd t

}
.

We obtain the four parameters a, b, c, d so that the Mean Square Error is minimized (minimizing
Mean Absolute Error instead often led to higher error estimates). For the HPP, the estimate
for λ is obtained by simply averaging the annual total number of operational loss events. Other
deterministic functions were tried for the cumulative intensity (sinusoidal, tangent, etc.), but did
not result in a good fit. The following Table 2 demonstrates the estimated parameters and the Mean
Square Error (MSE) and the Mean Absolute Error (MAE) for the cubic cumulative intensities and
a simple homogeneous Poisson process with a constant intensity factor. Figure 4 shows the three
fits plotted together with the actual aggregated number of events. The cubic fits appear to be
superior to the standard Poisson, as illustrated by the Figures 4 and A1, and confirmed by the
MSE and MAE error comparison from Tables 2 and A1. In the subsequent analysis, we will

Table 2: Fitted frequency functions to the “External” type losses.

Process Parameter Estimates MSE MAE

Cubic I a b c d

2.02 305.91 0.53 3.21 16.02 2.708

Cubic II a b c d

237.88 236.30 0.00026 8.27 14.56 2.713

Poisson λ

10.13 947.32 24.67

assume the deterministic cubic (I or II) forms for the operational loss frequency distributions, and
will no longer consider the HPP case.
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Figure 4: Annual accumulated number of “External” operational losses, with fitted cubic and
Poisson models.
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3.3 Operational Loss Distributions

We restrict our attention to the loss distributions that can be used to model the losses that lie on
the positive real half-line. The following distributions for loss severity are considered in the study:

Exponential Exp(β) fX(x) = βe−βx

x ≥ 0, β > 0

Lognormal LN (µ, σ) fX(x) = 1√
2πσx

exp
{
− (log x−µ)2

2σ2

}
x ≥ 0, µ, σ > 0

Gamma Gam(α, β) fX(x) = βαxα−1

Γ(α) exp {−βx}
x ≥ 0, α, β > 0

Weibull Weib(β, τ) fX(x) = τβxτ−1 exp {−βxτ}
x ≥ 0, β, τ > 0

log-Weibull logWeib(β, τ) fX(x) = 1
xτβ(log x)τ−1 exp {−β(log x)τ}

x ≥ 0, β, τ > 0

Generalized GPD(ξ, β) fX(x) = β−1(1 + ξxβ−1)−(1+ 1
ξ )

Pareto x ≥ 0, β > 0

Burr Burr(α, β, τ) fX(x) = ταβαxτ−1(β + xτ )−(α+1)

x ≥ 0, α, β, τ > 0

log-αStable logSα(β, σ, µ) fX(x) = g(ln x)
x , g ∈ Sα(β, σ, µ)

no closed-form density
x > 0, α ∈ (0, 2), β ∈ [−1, 1], σ, µ > 0

Symmetric αStable SαS(σ) fY (y) = g(y), g ∈ Sα(0, σ, 0),
no closed-form density
x = |y|, α ∈ (0, 2), σ > 0
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Table 3: Estimated γ and Fγ(u) values for the “External” type operational loss data.

γ,Fγ(u) ‘Naive’ Conditional

Exp β 9.6756·10−9 9.7701·10−9

Fγ(u) 0.0096 0.0097

LN µ 16.5789 15.7125

σ 1.7872 2.3639
Fγ(u) 0.0610 0.2111

Gam α 0.3574 1.5392·10−6

β 3.4585·10−9 1.6571·10−9

Fγ(u) 0.1480 ≈ 1

Weib β 1.1613·10−4 0.0108

τ 0.5175 0.2933
Fγ(u) 0.1375 0.4629

logWeib β 3.1933·10−12 2.8169·10−8

τ 9.2660 6.2307
Fγ(u) 0.1111 0.3016

GPD ξ 1.2481 1.5352

β 1.2588·107 0.7060·107

Fγ(u) 0.0730 0.1203

Burr α 0.0987 0.1284

β 2.5098·1026 3.2497·1020

τ 4.2672 3.3263
Fγ(u) 0.0145 0.0311

logSα α 1.8545 1.3313

β 1 -1
σ 1.1975 2.7031
µ 16.6536 10.1928

Fγ(u) 0.0331 0.9226

SαS α 0.6820 0.5905

σ 1.1395·107 0.7073·107

Fγ(u) 0.0715 0.1283

Table 3 demonstrates the parameter values γ of the fitted distributions to the “External” data set
and the estimated fraction of the missing data Fγ(u), under the ‘naive’ and the correct, conditional,
approaches. The results for the remaining four loss types are presented in the Appendix. The
tables demonstrate that under the truncated fit, more weight is put on the lower magnitude losses,
including the missing losses, than what is predicted by the ‘naive’ model, as indicated by the
Fγ(u) estimates. The fraction indicates the true ‘information loss’ due to data misspecification.
The location parameters (if relevant) are decreased, the scale parameters increased and the shape
parameters (if relevant) decreased under the correct model (for the GPD distribution, the shape
parameter corresponds to 1/ξ), in most cases. Furthermore, the change in the skewness parameter
β of the log-αStable law from 1 to −1 for the “External”, “Relationship” and “Human” types
indicates that the right tail of the loss distribution under the correct model has a near-exponential
decay, comparable to that of the Lognormal.

Based on the estimation fraction of missing data, we agree to exclude the Gamma distribution
from further analysis. The proportion of observed data being nearly zero is highly unrealistic.
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Figure 5: Upper quantiles of fitted truncated loss distributions to the “External” type losses,
together with the empirical distribution.
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3.4 Goodness-of-Fit Tests for Operational Loss Distributions

3.4.1 Visual Tests

Figure 5 illustrates the upper quantiles of the considered conditional distributions (except for
Gamma) plotted against the empirical distribution, for the “External” type losses. The remaining
four cases are in the Appendix, Figure A2. Around the 95th quantile, the Lognormal distribution
suggests a good fit for the “External” type losses. Overall, Weibull, logWeibull and Lognormal
appear to be close to the empirical distribution function. For “Relationship” type, Lognormal and
log-Stable appear the best, for “Human” type Lognormal, log-Stable, Weibull and logWeibull, for
“Process” type Burr, Weibull and logWeibull, and for “Technology” type Weibull and logWeibull,
respectively.

3.4.2 EDF Goodness-of-Fit Tests

We test a composite hypothesis that the empirical d.f. (EDF) belongs to an entire family of
hypothesized truncated distributions. Since we estimate the parameters via MLE, we do not specify
the parameter values in the null expression. The null and alternative hypotheses are summarized
as:

H0 : Fn(x) ∈ F̂ (x)
HA : Fn(x) /∈ F̂ (x),

(3.1)

where Fn(x) is the empirical d.f., and F̂ (x) is the fitted d.f. for this sample. For the ‘naive’
scenario, F̂ (x) is the naively fitted d.f. with unconditional parameters. After necessary adjustments
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for the missing data, F̂ (x) for the truncated sample is defined as:

F̂ (x) =

{
F̂θc (x)−F̂θc (H)

1−F̂θc (H)
x ≥ H

0 x < H,
(3.2)

We consider seven statistics for the measure of the distance between the empirical and hypoth-
esized d.f.: Kolmogorov-Smirnov (D), Kuiper (V ), supremum Anderson-Darling (A), supremum
“upper tail” Anderson-Darling (Aup), quadratic Anderson-Darling (A2), quadratic “upper tail”
Anderson-Darling (A2

up) and Cramér-von Mises (W 2), computed as

D = max
{
D+, D−} ,

V = D+ + D−,

A =
√

n sup
x

∣∣∣∣∣∣ Fn(x)− F̂ (x)√
F̂ (x)

(
1− F̂ (x)

)
∣∣∣∣∣∣ ,

Aup =
√

n sup
x

∣∣∣∣∣Fn(x)− F̂ (x)

1− F̂ (x)

∣∣∣∣∣ ,
A2 = n

∫ ∞

−∞

(Fn(x)− F̂ (x))2

F̂ (x)(1− F̂ (x))
dF̂ (x),

A2
up = n

∫ ∞

−∞

(Fn(x)− F̂ (x))2

(1− F̂ (x))2
dF̂ (x),

W 2 = n

∫ ∞

−∞
(Fn(x)− F̂ (x))2dF̂ (x),

where D+ =
√

n supx{Fn(x) − F̂ (x)} and D− =
√

n supx{F̂ (x) − Fn(x)}, and F̂ (x) is defined in
Equation (3.2). Note that the supremum class statistics are multiplied by

√
n and the quadratic

class by n, to make them comparable across samples of different size. The limiting distributions of
the test statistics are not parameter-free, so the p-values and the critical values were obtained with
Monte Carlo simulations Ross (2001). The Aup and A2

up statistics are introduced and studied in
Chernobai, Rachev and Fabozzi (2005), and designed to put most of the weight on the upper tail.
Results for the “External” losses are presented in Table 4. The remaining four cases are presented
in the Appendix. For the “External” type losses, most of the unconditional distributions show a
poor fit under the ‘naive’ approach, and Weibull and Lognormal show the best fit in terms of both,
low statistic values, and high p-values.

3.5 Expected Loss, Value-at-Risk and Conditional Value-at-Risk

In this section, we estimate the expected aggregated loss (EL), VaR and CVaR and examine the
impact of ignoring the missing data on the operational risk capital charge. We use a forward-
looking approach, and use the functional form of the frequency and the parameters of the severity
distribution, obtained from the historical data over 23 year period, to forecast expected total loss,
VaR and CVaR one year ahead. We only consider the Cubic I case for the frequency. Table 5
provides the estimates of expected loss (whenever applicable), VaR and CVaR estimates for the
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Table 4: Results of in-sample GOF tests for “External” type operational losses. p-values (in square
brackets) were obtained via 1,000 Monte Carlo simulations.

KS V AD AD2 W 2

Exp 6.5941 6.9881 4.4·106 128.35 17.4226

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.6504 1.2144 2.1702 0.5816 0.0745
[0.326] [0.266] [0.469] [0.120] [0.210]

Weib 0.4752 0.9498 2.4314 0.3470 0.0337
[0.852] [0.726] [0.384] [0.519] [0.781]

logWeib 0.6893 1.1020 2.2267 0.4711 0.0563
[0.296] [0.476] [0.481] [0.338] [0.458]

GPD 0.9708 1.8814 2.7742 1.7091 0.2431
[0.009] [<0.005] [0.284] [<0.005] [<0.005]

Burr 1.3266 2.0385 2.8775 2.8954 0.5137
[0.050] [0.048] [0.328] [0.048] [0.048]

logSα 7.3275 7.4089 37.4863 194.74 24.3662
[0.396] [0.458] [0.218] [0.284] [0.366]

SαS 0.7222 1.4305 1.1·105 1.7804 0.1348
[0.586] [0.339] [0.990] [0.980] [0.265]

Table 5: Estimates of expected aggregated loss, VaR and CVaR (figures must be further scaled
×1010) for “External” type losses. Figures are based on 50,000 Monte Carlo samples.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

Exp ‘Naive’ 0.0207 0.0618 0.0897 0.0790 0.1064

Conditional 0.0306 0.0798 0.1100 0.0985 0.1283

LN ‘Naive’ 0.0157 0.0613 0.1697 0.1450 0.3451

Conditional 0.0327 0.1126 0.4257 0.3962 1.1617

Weib ‘Naive’ 0.0151 0.0613 0.1190 0.0975 0.1628

Conditional 0.0208 0.0885 0.2494 0.2025 0.4509

logWeib ‘Naive’ - 0.0611 0.1309 0.1059 0.1940

Conditional - 0.0839 0.2489 0.2046 0.4909

GPD ‘Naive’ - 0.1190 0.8381 2.7082 12.4017

Conditional - 0.2562 2.6514 63.4969 314.41

Burr ‘Naive’ - 0.4072 8.7417 366.32 1823.79

Conditional - 0.7165 15.8905 1502.42 7498.81

logSα ‘Naive’ - 0.1054 3.7687 - -

Conditional - 0.3879 0.8064 0.6750 1.2641

SαS ‘Naive’ - 0.1730 1.8319 35.7423 176.64

Conditional - 0.4714 7.6647 206.49 1025.16

year 2003, obtained via 50,000 Monte Carlo samples, and compares the figures obtained using the
‘naive’ approach and the conditional approach. The remaining four cases are in the Appendix.
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Table 5 provides evidence to conclude that in most cases, the expected aggregated loss, VaR and
CVaR figures appear highly under-estimated if the ‘naive’ approach is wrongly used, instead of the
conditional. Some figures also indicate that the effect is more severe for heavier-tailed distributions.
We exclude the Exponential distribution from subsequent consideration due to poor performance
of in-sample goodness-of-fit tests.

3.6 Backtesting

In this section, we conduct an out-of-sample backtesting of the models. Before we proceed, we would
like to point out that the Exponential distribution showed a poor in-sample fit for all five loss types.
We therefore exclude the distribution from any further empirical examination. Additionally, we
have demonstrated in the theoretical part of the paper, that fitting unconditional distributions to
the operational loss frequency and severity functions would inevitably result in biased estimates.
In Section 3.5 we have provided empirical evidence to verify that indeed the capital charge is
significantly underestimated (in most cases) if the ‘naive’ approach is wrongly used.

The goal of this section is to determine which loss distribution fits our five samples best. Ex-
amining how well or how badly various considered models predict the true future losses, is, we
believe, the key to determining which of the loss distributions is the best to be used for practical
purposes. For this purpose, we split our data samples into two parts: (1) the first sample consists
of all data points in the 1980-1995 time frame, and will be used for forecasting, and (2) the second
sample consists of the remaining data in the 1996-2001 time frame. We use the first sample and
the obtained truncated loss distributions’ parameter estimates to analyze our models’ predicting
power regarding the data belonging to the second sample. We conduct the analysis is the following
fashion. We assume that our model has a one-step ahead predicting power, with one step equal
to one year (due to a scarcity of data, it would be unreasonable to use smaller intervals). The
window length of the sample used for calibration is taken to be sixteen years. We start with the
data from the first 1980 until 1995, in order to conduct the forecasting about the 1996. First, we
estimate the unknown parameters of truncated distributions. Next, to obtain the distribution of
the annually aggregated losses we repeat the following a large number (10,000) of times: use the
estimated parameters to simulate N losses exceeding the $25 million threshold, where N is the
number of losses in the year that we perform forecasting on as dictated by the fitted frequency
function, and aggregate them. At each forecasting step (seven steps total) we shift the window
by one year forward and repeat the above procedure. In this way we test the model for both the
severity and severity distributions. We have observed that both Cubic I and II models fit the data
very well. For simplicity, in this section we only focus on the Cubic I model. Since the observed
data is incomplete, we are only able to compare the forecasting power regarding the truncated
(rather than complete) data. The analysis is composed with two parts.

In part one, we compare the high quantiles (95, 99 and 99.9) of the forecasted aggregated loss
distribution with the corresponding bootstrapped quantiles of the realized losses.8 Table 6 presents
the mean squared error (MSE) and mean absolute error (MAE) estimates for the forecasted high
quantiles relative to the corresponding bootstrapped quantiles (left), realized total loss (middle),
and the errors of the simulated aggregate losses relative to the actual total loss (right), for the
“External” type losses. The remaining four cases are in the Appendix. For the “External” type
losses, clearly the Weibull model provides the lowest estimates for the errors, followed by the
logWeibull and log-αStable models. For the remaining four types, Weibull and logWeibull are

8The use of bootstrapping and Monte Carlo was suggested by the Basel Committee BCBS (2001b),BCBS (2004).
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Table 6: Average estimates of forecast errors for “External” type aggregated losses. Left panel:
errors between relative upper quantiles; middle panel: errors of forecasted upper quantiles relative
to realized loss; right panel: overall error between forecasted and realized loss. Figures are based
on 10,000 Monte Carlo samples for every year in forecasting period.

Forecasted upper Forecasted upper Overall error:

quantiles vs. upper quantiles vs. actual forecasted

bootstrapped quantiles loss vs. actual loss

quantile MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010)

LN 95 0.2284 0.4071 0.2665 0.4508

99 2.6679 1.4589 2.8631 1.5220

99.9 59.0091 6.9119 60.2081 6.9971

0.4161 0.1373

Weib 95 0.0756 0.2380 0.0981 0.2817

99 0.4529 0.6065 0.5358 0.6698

99.9 2.7728 1.5693 3.0653 1.6555

0.0350 0.0835

logWeib 95 0.0843 0.2496 0.1078 0.2933

99 0.6127 0.6974 0.7058 0.7605

99.9 5.6387 2.1352 6.0582 2.2236

0.0523 0.0873

GPD 95 16.7032 3.0645 16.9948 3.1083

99 3287.19 41.7376 3292.66 41.8008

99.9 1.1·107 2454.50 1.1·107 2454.59

23.2·1010 1877.31

Burr 95 1174.90 25.2473 1177.23 25.2909

99 0.3·107 1026.97 2.7·106 1027.03

99.9 5.7·1010 1.8·105 5.7·1020 1.8·105

3.3·1012 9800.80

logSα 95 0.0916 0.2684 0.1170 0.3121

99 0.7443 0.8117 0.8506 0.8747

99.9 6.8469 2.4760 7.2695 2.5635

0.0792 0.0929

SαS 95 22.0854 3.8156 22.4520 3.8594

99 5606.35 60.8946 5614.50 60.9580

99.9 1.1·107 2758.87 1.1·107 2758.96

55.8·1010 4337.63

the best, followed by log-αStable and logNormal distributions. GPD, Burr and symmetric Stable
over-estimate the true losses, as is suggested by very high error estimates.

In the second part of the analysis, we test the severity distribution models (without checking
for the frequency) via the Likelihood Ratio test, proposed by Berkowitz (2000). We estimate the
parameters of the loss distribution from the historic data in the calibration period; then we use this
distribution and the estimated parameters to conduct the forecast one year ahead. The parameters
are fully specified, so we are able to conduct a simple hypothesis testing. Likelihood Ratio (LR)
tests are uniformly most powerful, so applying them would give us an accurate estimate of how likely
it is that the realized losses have come from a particular distribution. Under the assumption that
a fitted truncated loss distribution F is true, F ∼ U [0, 1] under the null. A simple transformation
Y = Φ−1(F ) would transform the valued of cdf into a standard Normal random variable Y . The
LR test is then applied to Y directly in a usual way:

LR = −2(l0 − l1),

where l0 and l1 are, respectively, the log-likelihood under the null parameters µ = 0, σ = 1, and
under the parameters estimated via MLE. The p-values are obtained by referring to the Chi-squared
table, with 2 degrees of freedom. Table 7 presents the results for the “External” losses, and the
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Table 7: LR statistic and p-values (in square brackets) for “External” type aggregated losses in the
7-year forecast period.

LR statistic and p-value average p-value

Year 1 2 3 4 5 6 7

LN 6.5946 2.6909 0.2571 0.0677 0.0682 6.6879 3.5182

[0.037] [0.260] [0.879] [0.967] [0.967] [0.035] [0.172] [0.474]

Weib 6.8197 2.7312 0.3206 0.1054 0.1319 6.7159 3.5155

[0.033] [0.255] [0.852] [0.949] [0.936] [0.035] [0.172] [0.462]

logWeib 6.5458 2.3548 0.2483 0.1285 0.1255 6.3278 3.4601

[0.038] [0.308] [0.883] [0.938] [0.939] [0.042] [0.177] [0.475]

GPD 6.8378 3.1089 0.2408 0.0518 0.0462 7.2744 3.5594

[0.033] [0.211] [0.887] [0.974] [0.977] [0.026] [0.169] [0.468]

Burr 9.5129 5.6630 0.6205 ≈0 ≈0 9.6215 3.9581

[0.009] [0.059] [0.733] [>0.995] [>0.995] [0.008] [0.138] [0.421]

logSα 23.2014 32.0407 15.3027 5.1930 20.0156 6.7474 22.5930

[<0.005] [<0.005] [<0.005] [0.075] [<0.005] [0.034] [<0.005] [0.016]

SαS 6.4584 2.5302 0.2017 0.0990 0.0879 7.4456 3.4455

[0.040] [0.282] [0.904] [0.952] [0.957] [0.024] [0.179] [0.477]

remaining four cases are in the Appendix. The symmetric Stable shows the highest average p-values,
with logWeibull and GPD the next highest. The highest average p-values were obtained for the
Weibull model for the “Relationship” and “Human” losses, GPD was the best for “Process”, and
log-αStable was the best for the “Technology” losses. The results are slightly surprising compared
to the estimated forecast errors, but confirm many conclusions drawn from the in-sample goodness-
of-fit tests.

4 Robust Approach

In the previous section, Section 3.6, we tested the forecasting power of the considered loss models.
From the first part of the analysis, we concluded that moderately heavy-tailed distributions such
as Lognormal and Weibull possess a reasonably good predicting power. The second part of the
analysis suggested that the losses considered for the forecast period or more likely to be drawn
from heavier-tailed distributions such as GPD or log-αStable. It is very likely that such difference
results from the presence of high-magnitude outliers in the data, that leads to accepting heavy-tailed
models, whereas inclusion of such outliers in the forecasting models can seriously over-estimate the
predicted losses.

In recent years outlier-resistant or so-called robust estimates of parameters are becoming more
wide-spread in risk management. Such models – called robust (statistics) models – were introduced
by P.J. Huber in 1981 and applied to robust regression analysis, more recent references on robust
statistics methods include Huber (2004), Rousseeuw and Leroy (2003), Martin and Simin (2003),
Knez and Ready (1997) and Hampel, Ronchetti, Rousseeuw and Stahel (1986). Robust models
treat extreme data points as outliers (or some standard procedure is used to detect outliers in the
data) which distort the main flow of the loss process. Practitioners are more likely to be searching
for a stable model that would capture the mainstream tendency of the operational loss process.
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Table 8: Estimated γ and Fγ(u) values for the “External” type operational loss data, under the
robust approach.

γ,Fγ(u) ‘Naive’ Conditional

Exp β 2.5156·10−8 2.5805·10−8

Fγ(u) 0.0248 0.0255

LN µ 16.3676 15.8095

σ 1.5680 1.9705
Fγ(u) 0.0518 0.1558

Gam α 0.5532 0.0491

β 1.3916·10−8 6.1244·10−9

Fγ(u) 0.1052 ≈ 1

Weib β 1.1900 0.0012

τ 0.6606 0.4178
Fγ(u) 0.1036 0.3185

logWeib β 1.5224·10−14 2.1389·10−10

τ 11.2079 7.9597
Fγ(u) 0.0879 0.2254

GPD ξ 0.8995 1.1813

β 1.2968·107 7.7474·106

Fγ(u) 0.0718 0.1132

Burr α 0.5477 1.1642

β 1.8890·109 8.6128·105

τ 1.3784 0.8490
Fγ(u) 0.0502 0.1451

logSα α 2 2

β 0.8736 0.4377
σ 1.1087 1.3992
µ 16.3674 15.7960

Fγ(u) 0.0522 0.1593

SαS α 0.7693 0.6598

σ 1.0404·107 6.7785·106

Fγ(u) 0.0708 0.1208

Under the robust approach, the focus is on modelling the major bulk of the data that is driving
the entire process. Robust models help protect against the outlier bias in parameter estimates
and provide with a better fit of the loss distributions to the data than under the classical model.
Moreover, outliers in the original data can seriously drive future forecasts in an unwanted (such
as worst-case scenario) direction, which is avoided by the robust approach models. Regarding the
use of robust methods for the operational risk modelling the Basel Committee stated the following
BCBS (2001a): “...data will need to be collected and robust estimation techniques ... will need to
be developed.”

Following the idea of robust statistics, for the forecasting purposes we offer a second methodology
that involves determining outliers and trimming the top 1-5% of the data. This data adjustment
would result in a more robust outlook regarding a general future scenario. Excluding the outliers
in the original loss data is likely to noticeably improve the forecasting power of considered loss
distributions, and can be used for forecasting of the generic (most likely) scenario of future losses
within reasonable boundaries. The resulting operational capital charge estimates would be more
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Table 9: Estimates of expected aggregated loss, VaR and CVaR (figures must be further scaled
×1010) for “External” type losses, under the robust approach. Figures are based on 50,000 Monte
Carlo samples.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

Exp ‘Naive’ 0.0080 0.0238 0.0346 0.0304 0.0409

Conditional 0.0116 0.0299 0.0414 0.0371 0.0481

LN ‘Naive’ 0.0088 0.0331 0.0804 0.0661 0.1364

Conditional 0.0154 0.0580 0.1642 0.1397 0.3334

Weib ‘Naive’ 0.0076 0.0278 0.0466 0.0393 0.0581

Conditional 0.0088 0.0354 0.0715 0.0599 0.1066

logWeib ‘Naive’ - 0.0289 0.0507 0.0428 0.0675

Conditional - 0.0395 0.0865 0.0704 0.1318

GPD ‘Naive’ 0.0258 0.0463 0.1834 0.2817 1.0771

Conditional - 0.0943 0.5604 2.1575 9.9486

Burr ‘Naive’ - 0.0751 0.5666 9.8732 48.6049

Conditional - 0.0676 0.3246 0.7372 3.1567

logSα ‘Naive’ - 0.0341 0.0818 0.0684 0.1446

Conditional - 0.0570 0.1695 0.1493 0.3841

SαS ‘Naive’ - 0.0854 0.6791 17.1402 84.8334

Conditional - 0.2234 2.4408 129.37 644.14

optimistic than otherwise predicted by the classical model. We emphasize, however, that we are
not recommending the use of only one of the two approaches – classical or robust – instead of the
other. Rather, in the presence of outliers, we encourage the use of both models for the analysis,
and use the robust model as the complement to the classical.

We here consistently exclude the highest 5% of each data set. We reproduce the results for
the parameter estimates, capital charge estimates and out-of-sample goodness of fit tests, for the
“External” type losses.9 Tables 9, 10 and 11 indicate the following: first, the estimates of expected
loss, VaR and CVaR are much more realistic, second, the accuracy of the forecasts has remarkably
improved as indicated by much lower error estimates, and third, both tests (forecast error estimates,
and the LR test) converge in their indication of the best model: the robust approach confirms that
the logWeibull distribution has the best forecast power for the “External” type loss, with Weibull,
Lognormal, log-Stable, GPD, symmetric Stable and Burr next, in the order from best to poor.

5 Conclusions

In this study we proposed and empirically investigated a methodology for consistent estimation of
the loss and frequency distributions for the assumed actuarial model of operational losses in presence
of minimum collection thresholds. A compound nonhomogeneous Poisson process was considered for
the study. The analysis was conducted using losses of five different loss categories – “Relationship,”
“Human,” “Processes,” “Technology,” and “External” – obtained from an operational risk loss
database.

Our findings demonstrated that ignoring such minimum thresholds leads to severe biases in
9We omit the remaining four cases for brevity. Key results and conclusions remain the same.
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Table 10: Average estimates of forecast errors for “External” type aggregated losses, under the
robust approach. Left panel: errors between relative upper quantiles; middle panel: errors of
forecasted upper quantiles relative to realized loss; right panel: overall error between forecasted
and realized loss. Figures are based on 10,000 Monte Carlo samples for every year in forecasting
period.

Forecasted upper Forecasted upper Overall error:

quantiles vs. upper quantiles vs. actual forecasted

bootstrapped quantiles loss vs. actual loss

quantile MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010)

LN 95 0.0185 0.1153 0.0260 0.1443

99 0.1532 0.3498 0.1838 0.3921

99.9 1.7033 1.2369 1.8506 1.2937

0.0143 0.0455

Weib 95 0.0037 0.0479 0.0070 0.0749

99 0.0136 0.1018 0.0236 0.1442

99.9 0.0555 0.2212 0.0838 0.2779

0.0019 0.0284

logWeib 95 0.0035 0.0469 0.0069 0.0753

99 0.0140 0.1069 0.0245 0.1489

99.9 0.0619 0.2388 0.0918 0.2958

0.0019 0.0281

GPD 95 0.5389 0.5677 0.5729 0.5968

99 45.4984 4.9129 45.9027 4.9548

99.9 22951.07 108.00 22964.73 108.06

25964.56 1.6577

Burr 95 41.6391 4.3990 41.9815 4.4280

99 22565.03 92.0143 22572.25 92.0562

99.9 4.1·108 11255.38 4.1·108 11255.44

2.0·1010 630.68

logSα 95 0.0149 0.0951 0.0210 0.1243

99 0.1312 0.2961 0.1568 0.3382

99.9 1.6894 1.0598 1.7989 1.1166

0.0164 0.0413

SαS 95 3.8490 1.6133 3.9474 1.6423

99 604.07 19.7887 605.82 19.8306

99.9 6.2·105 626.31 6.2·105 626.37

1.5·106 10.6711

corresponding parameter estimates under the ‘naive’ approach in which the thresholds are ignored.
As a consequence, EL, VaR, and CVaR are underestimated under the ‘naive’ approach and are
generally 1.2 to 5 times higher under the conditional approach, in which truncated loss distributions
were fitted to the loss data and frequency was adjusted to account for information loss. A variety of
goodness-of-fit measures were used to test the adequacy of different loss distributions. For example,
for the “External” type losses the Logweibull and Weibull distributions showed the best overall fit,
while more heavy-tailed distributions such as Burr and GPD better fit the upper tail for practically
all five datasets, supporting the conjecture that the operational loss data is severely heavy-tailed.
The findings were supported by out-of-sample forecasting.

An alternative approach, the robust approach, was briefly introduced and applied in the fore-
casting part of the study. Excluding few highest data points from the dataset allows to investigate
the behavior of the major bulk of the data as well as examine the sensitivity of parameters and
risk measures to the tail events. In this study, applying the robust methodology resulted in signifi-
cantly improved forecasts and confirmed the choice of loss distribution obtained under the classical
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Table 11: LR statistic and p-values (in square brackets) for “External” type aggregated losses in
the 7-year forecast period, under the robust approach.

LR statistic and p-value average p-value

Year 1 2 3 4 5 6 7

LN 5.7220 3.6199 0.1477 ≈0 0.1078 6.5407 2.5591

[0.057] [0.164] [0.929] [>0.995] [0.948] [0.038] [0.278] [0.488]

Weib 5.1081 2.9975 0.0533 ≈0 0.0601 5.7516 2.4772

[0.078] [0.223] [0.974] [>0.995] [0.970] [0.056] [0.290] [0.513]

logWeib 4.6784 2.3294 ≈0 ≈0 0.1273 5.4843 2.4643

[0.096] [0.312] [>0.995] [>0.995] [0.938] [0.064] [0.292] [0.529]

GPD 6.2144 3.7330 0.1203 0.0289 0.2780 7.1288 2.5038

[0.045] [0.155] [0.942] [0.986] [0.870] [0.028] [0.286] [0.473]

Burr 9.2110 6.0794 0.3852 ≈0 0.2343 8.9561 2.4562

[0.010] [0.048] [0.825] [>0.995] [0.890] [0.011] [0.293] [0.440]

logSα 5.7938 94.1860 0.1588 ≈0 125.9073 6.5408 2.5913

[0.055] [<0.005] [0.924] [>0.995] [<0.005] [0.038] [0.274] [0.327]

SαS 6.5552 4.4805 0.2889 ≈0 0.0702 7.7629 2.4301

[0.038] [0.106] [0.866] [>0.995] [0.966] [0.021] [0.297] [0.470]

approach.
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Appendix

Table A1: Fitted frequency functions to the operational losses.

Process Parameter Estimates MSE MAE

“Relationship”

Cubic I a b c d
34.13 1364.82 0.63 3.32 76.57 7.05

Cubic II a b c d
930.29 896.17 0.0010 6.82 69.08 6.57

Poisson λ
36.91 5907.45 65.68

“Human”

Cubic I a b c d
33.49 1436.56 0.65 3.43 68.05 6.89

Cubic II a b c d
950.20 917.11 0.0008 6.80 61.59 6.60

Poisson λ
35.35 6600.38 65.33

“Processes”

Cubic I a b c d
9.44 2098.96 1.04 4.58 22.50 3.64

Cubic II a b c d
2034.25 2024.77 0.0007 4.79 23.06 3.65

Poisson λ
14.13 1664.82 36.57

“Technology”

Cubic I a b c d
0.79 120.20 0.58 3.47 3.71 1.28

Cubic II a b c d
137.68 138.39 0.0006 6.32 4.89 1.67

Poisson λ
3.35 217.04 13.42
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Figure A1: Fitted frequency functions to the operational losses. Top left: “Relationship”, top right:
“Human,” bottom left: “Processes,” bottom right: “Technology,”
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Figure A2: Upper quantiles of fitted truncated loss distributions to operational losses, together with
the empirical distribution. Top left: “Relationship,” top right: “Human,” bottom left: “Process,”
bottom right: “Technology.”
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Table A3: Results of in-sample GOF tests for “Relationship” type operational losses. p-values (in
square brackets) were obtained via 1,000 Monte Carlo simulations.

KS V AD AD2 W 2

Exp 11.0868 11.9973 1.3·107 344.37 50.5365

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.8056 1.3341 2.6094 0.7554 0.1012
[0.082] [0.138] [0.347] [0.043] [0.086]

Weib 0.5553 1.0821 3.8703 0.7073 0.0716
[0.625] [0.514] [0.138] [0.072] [0.249]

logWeib 0.5284 1.0061 3.0718 0.4682 0.0479
[0.699] [0.628] [0.255] [0.289] [0.514]

GPD 1.4797 2.6084 3.5954 3.7165 0.5209
[<0.005] [<0.005] [0.154] [<0.005] [<0.005]

Burr 1.3673 2.4165 3.3069 3.1371 0.4310
[0.032] [<0.005] [0.309] [<0.005] [0.011]

logSα 1.5929 1.6930 3.8184 3.8067 0.7076
[0.295] [0.295] [0.275] [0.290] [0.292]

SαS 1.1634 2.0695 1.4·105 4.4723 0.3630
[0.034] [<0.005] [>0.995] [0.992] [<0.005]

Table A4: Results of in-sample GOF tests for “Human” type operational losses. p-values (in square
brackets) were obtained via 1,000 Monte Carlo simulations.

KS V AD AD2 W 2

Exp 14.0246 14.9145 2.4·106 609.15 80.3703

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.8758 1.5265 3.9829 0.7505 0.0804
[0.032] [0.039] [0.126] [0.044] [0.166]

Weib 0.8065 1.5439 4.3544 0.7908 0.0823
[0.103] [0.051] [0.095] [0.068] [0.188]

logWeib 0.9030 1.5771 4.1343 0.7560 0.0915
[0.074] [0.050] [0.115] [0.115] [0.217]

GPD 1.4022 2.3920 3.6431 2.7839 0.3669
[<0.005] [<0.005] [0.167] [<0.005] [<0.005]

Burr 2.2333 3.1970 4.7780 7.0968 1.2830
[0.115] [0.115] [0.174] [0.115] [0.115]

logSα 9.5186 9.5619 36.2617 304.61 44.5156
[0.319] [0.324] [0.250] [0.312] [0.315]

SαS 1.1628 2.1537 5.8·105 11.9320 0.2535
[0.352] [0.026] [0.651] [0.971] [0.027]
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Table A5: Results of in-sample GOF tests for “Process” type operational losses. p-values (in square
brackets) were obtained via 1,000 Monte Carlo simulations.

KS V AD AD2 W 2

Exp 7.6043 8.4160 3.7·106 167.60 22.5762

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 0.6584 1.1262 2.0668 0.4624 0.0603
[0.297] [0.345] [0.508] [0.223] [0.294]

Weib 0.6110 1.0620 1.7210 0.2069 0.0338
[0.455] [0.532] [0.766] [0.875] [0.755]

logWeib 0.5398 0.9966 1.6238 0.1721 0.0241
[0.656] [0.637] [0.832] [0.945] [0.918]

GPD 1.0042 1.9189 4.0380 2.6022 0.3329
[0.005] [<0.005] [0.128] [<0.005] [<0.005]

Burr 0.5634 0.9314 1.6075 0.2639 0.0323
[0.598] [0.800] [0.841] [0.794] [0.840]

logSα 0.6931 1.1490 2.0109 0.4759 0.0660
[0.244] [0.342] [0.534] [0.202] [0.258]

SαS 1.3949 1.9537 3.3·105 6.5235 0.3748
[0.085] [0.067] [0.931] [0.964] [0.102]

Table A6: Results of in-sample GOF tests for “Technology” type operational losses. p-values (in
square brackets) were obtained via 1,000 Monte Carlo simulations.

KS V AD AD2 W 2

Exp 3.2160 3.7431 27.6434 27.8369 2.9487

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005]

LN 1.1453 1.7896 2.8456 1.3778 0.2087
[<0.005] [0.005] [0.209] [<0.005] [<0.005]

Weib 1.0922 1.9004 2.6821 1.4536 0.2281
[<0.005] [<0.005] [0.216] [<0.005] [<0.005]

logWeib 1.1099 1.9244 2.7553 1.5355 0.2379
[<0.005] [<0.005] [0.250] [<0.005] [<0.005]

GPD 1.2202 1.8390 3.0843 1.6182 0.2408
[<0.005] [<0.005] [0.177] [<0.005] [<0.005]

Burr 1.1188 0.9374 2.6949 2.0320 0.3424
[0.389] [0.380] [0.521] [0.380] [0.380]

logSα 1.1540 1.7793 2.8728 1.3646 0.2071
[<0.005] [0.007] [0.208] [<0.005] [<0.005]

SαS 2.0672 2.8003 2.7·105 19.6225 1.4411
[>0.995] [>0.995] [>0.995] [>0.995] [0.964]
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Table A7: Estimates of expected aggregated loss, VaR, and CVaR (figures must be further scaled
×1010) for “Relationship” type losses. Figures are based on 50,000 Monte Carlo samples.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

Exp ‘Naive’ 0.1348 0.2231 0.2704 0.2515 0.2959

Conditional 0.1422 0.2322 0.2763 0.2598 0.3016

LN ‘Naive’ 0.1105 0.2832 0.5386 0.4662 0.8685

Conditional 0.1634 0.4662 1.0644 0.9016 1.9091

Weib ‘Naive’ 0.1065 0.2203 0.2996 0.2700 0.3505

Conditional 0.1284 0.3187 0.5121 0.4430 0.6689

logWeib ‘Naive’ - 0.2235 0.3193 0.2845 0.3873

Conditional - 0.3332 0.5902 0.5049 0.8386

GPD ‘Naive’ - 0.8240 4.1537 9.6367 41.5129

Conditional - 1.5756 11.3028 52.8928 249.17

Burr ‘Naive’ - 2.8595 31.5637 1234.95 6139.69

Conditional - 1.5713 11.5519 25.9142 114.20

logSα ‘Naive’ - 1.9124 7488.08 inf inf

Conditional - 0.4359 0.9557 0.8277 1.7443

SαS ‘Naive’ - 2.1873 17.3578 329.99 1627.38

Conditional - 4.5476 56.2927 376.09 1822.93

Table A8: Estimates of expected aggregated loss, VaR, and CVaR (figures must be further scaled
×1010) for “Human” type losses. Figures are based on 50,000 Monte Carlo samples.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

Exp ‘Naive’ 0.0305 0.4657 0.5452 0.5145 0.5848

Conditional 0.0316 0.4818 0.5618 0.5312 0.6041

LN ‘Naive’ 0.1981 0.4970 0.9843 0.8534 1.6652

Conditional 0.4171 1.2161 3.4190 3.3869 9.4520

Weib ‘Naive’ 0.1993 0.4017 0.5507 0.4945 0.6456

Conditional 0.2881 0.7997 1.5772 1.3232 2.3746

logWeib ‘Naive’ - 0.4174 0.6184 0.5460 0.7732

Conditional - 0.8672 1.8603 1.5569 3.0576

GPD ‘Naive’ - 3.9831 33.5741 3945.75 19685.73

Conditional - 12.1150 168.64 67596.68 3.4·105

Burr ‘Naive’ - 85.5620 2690.44 2.1·106 1.1·107

Conditional - 94.8281 3042.32 7.7·106 3.8·107

logSα ‘Naive’ - 1.9·107 7.2·1024 inf inf

Conditional - 2.2737 4.2319 3.6742 6.7179

SαS ‘Naive’ - 6.2811 77.4762 554.19 2691.79

Conditional - 14.5771 203.24 3922.83 19403.45
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Table A9: Estimates of expected aggregated loss, VaR, and CVaR (figures must be further scaled
×1010) for “Process” type losses. Figures are based on 50,000 Monte Carlo samples.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

Exp ‘Naive’ 0.5140 0.8175 0.9664 0.9109 1.0504

Conditional 0.5407 0.8522 1.0058 0.9483 1.0904

LN ‘Naive’ 0.5622 1.5508 3.5665 3.1201 6.9823

Conditional 0.8457 2.5610 6.5625 5.7823 13.9079

Weib ‘Naive’ 0.4170 0.8800 1.2102 1.0891 1.4311

Conditional 0.5131 1.2761 2.1308 1.8257 2.8578

logWeib ‘Naive’ - 0.9611 1.4498 1.2794 1.8514

Conditional - 1.4780 2.6511 2.2575 2.8255

GPD ‘Naive’ - 12.5930 131.25 1121.25 5467.11

Conditional - 20.8700 262.52 4384.77 21648.21

Burr ‘Naive’ - 6.8569 52.0391 206.06 962.88

Conditional - 1.7987 4.1859 3.9723 9.7191

logSα ‘Naive’ - 1.5613 3.5159 2.9589 6.0887

Conditional - 2.5394 6.7070 5.9289 14.3725

SαS ‘Naive’ - 38.7627 529.99 1.3·105 6.4·105

Conditional - 74.9073 1280.02 1.8·106 8.9·106

Table A10: Estimates of expected aggregated loss, VaR, and CVaR (figures must be further scaled
×1010) for “Technology” type losses. Figures are based on 50,000 Monte Carlo samples.

EL VaR0.95 VaR0.99 CVaR0.95 CVaR0.99

Exp ‘Naive’ 0.0232 0.0598 0.0828 0.0741 0.0964

Conditional 0.0306 0.0712 0.0963 0.0867 0.1102

LN ‘Naive’ 0.0324 0.1202 0.3593 0.2970 0.7303

Conditional 0.0958 0.2898 1.2741 1.5439 5.4865

Weib ‘Naive’ 0.0226 0.0798 0.1368 0.1159 0.1795

Conditional 0.0358 0.1454 0.3625 0.2958 0.6180

logWeib ‘Naive’ - 0.0861 0.1683 0.1399 0.2408

Conditional - 0.1670 0.4747 0.3885 0.8817

GPD ‘Naive’ - 0.4415 5.6954 56.3367 276.03

Conditional - 1.6249 54.4650 92471.16 4.6·105

Burr ‘Naive’ - 2.8840 158.94 5.3·106 2.6·107

Conditional - 9.0358 855.78 8.3·107 4.2·108

logSα ‘Naive’ - 0.1222 0.3560 0.3024 0.7435

Conditional - 0.2990 1.2312 1.6447 5.9933

SαS ‘Naive’ - 4.9·105 3.2·109 9.4·1023 4.7·1024

Conditional - 7.1·106 6.9·1010 1.5·1026 7.6·1026
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Table A11: Average estimates of forecast errors for “Relationship” type aggregated losses. Left
panel: errors between relative upper quantiles; middle panel: errors of forecasted upper quantiles
relative to realized loss; right panel: overall error between forecasted and realized loss. Figures are
based on 10,000 Monte Carlo samples for every year in forecasting period.

Forecasted upper Forecasted upper Overall error:

quantiles vs. upper quantiles vs. actual forecasted

bootstrapped quantiles loss vs. actual loss

quantile MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010)

LN 95 0.1260 0.3356 0.1974 0.4259

99 0.9316 0.8823 1.4409 1.1805

99.9 10.5910 3.0870 13.1306 3.5322

0.1225 0.1780

Weib 95 0.0837 0.2262 0.0636 0.2260

99 0.1731 0.3680 0.2335 0.4681

99.9 0.5521 0.7183 0.8549 0.9056

0.0335 0.1348

logWeib 95 0.0846 0.2368 0.0760 0.2508

99 0.2031 0.4193 0.3072 0.5387

99.9 0.7933 0.8496 1.3684 1.1500

0.0382 0.1401

GPD 95 8.6863 2.8066 9.9388 3.0156

99 516.75 22.0579 531.19 22.3719

99.9 1.1·105 320.35 1.1·105 320.79

2.6·104 3.4405

Burr 95 31.6051 5.1915 34.0472 5.4006

99 2892.27 48.9572 2926.30 49.2709

99.9 31.1·105 1483.69 31.2·105 1484.14

16.1·105 16.7084

logSα 95 0.1246 0.3250 0.1886 0.4088

99 0.7544 0.7781 1.2114 1.0588

99.9 9.8656 2.9407 12.3724 3.3795

0.1378 0.1744

SαS 95 117.28 10.1415 121.96 10.3504

99 1.35·104 109.31 1.36·104 109.62

99.9 5.0·106 2125.12 5.0·106 2125.56

6.0·106 25.4668
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Table A12: Average estimates of forecast errors for “Human” type aggregated losses. Left panel:
errors between relative upper quantiles; middle panel: errors of forecasted upper quantiles relative
to realized loss; right panel: overall error between forecasted and realized loss. Figures are based
on 10,000 Monte Carlo samples for every year in forecasting period.

Forecasted upper Forecasted upper Overall error:

quantiles vs. upper quantiles vs. actual forecasted

bootstrapped quantiles loss vs. actual loss

quantile MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010)

LN 95 0.0061 0.8881 1.9712 1.3778

99 16.0585 3.9059 22.1948 4.6600

99.9 478.23 21.2076 522.73 22.2719

13.7183 0.5331

Weib 95 0.2386 0.4025 0.5234 0.6901

99 1.1650 0.9607 2.8835 1.6854

99.9 11.6062 3.2353 18.8769 4.2933

0.2607 0.3286

logWeib 95 0.3137 0.4948 0.7277 0.8196

99 2.3749 1.4061 4.7648 2.1604

99.9 29.3964 5.1937 40.6156 6.2559

0.4318 0.3577

GPD 95 694.06 25.8942 721.22 26.3880

99 1.5·105 373.03 1.5·105 373.78

99.9 7.5·108 24126.68 7.5·108 24127.74

14.3·1010 1796.50

Burr 95 97987.89 285.09 98258.80 285.58

99 8.5·107 8688.99 8.5·107 8689.75

99.9 4.9·1012 1.8·106 4.9·1012 1.8·106

0.6·1015 1.6·105

logSα 95 0.8942 0.7879 1.7607 1.2803

99 11.9707 3.2636 17.2067 4.0170

99.9 289.35 15.3948 322.95 16.4575

2.6761 0.4797

SαS 95 671.54 25.3614 697.49 25.8550

99 1.4·105 365.68 1.4·105 366.43

99.9 7.7·108 2.2·104 7.7·108 2.2·104

6.3·109 473.22
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Table A13: Average estimates of forecast errors for “Process” type aggregated losses. Left panel:
errors between relative upper quantiles; middle panel: errors of forecasted upper quantiles relative
to realized loss; right panel: overall error between forecasted and realized loss. Figures are based
on 10,000 Monte Carlo samples for every year in forecasting period.

Forecasted upper Forecasted upper Overall error:

quantiles vs. upper quantiles vs. actual forecasted

bootstrapped quantiles loss vs. actual loss

quantile MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010)

LN 95 2.5846 1.4030 2.1980 1.3718

99 19.7641 4.2121 26.0670 4.7600

99.9 290.95 16.0800 339.94 17.7763

3.6324 0.8224

Weib 95 2.2836 0.9438 0.5316 0.6703

99 3.2796 1.2998 1.6572 1.1983

99.9 9.0910 2.6978 11.2902 3.0559

0.6991 0.6419

logWeib 95 2.2026 0.9875 0.6936 0.7703

99 4.0327 1.6497 3.4160 1.7046

99.9 15.7046 3.7568 21.4673 4.3466

0.7913 0.6661

GPD 95 384.25 17.4088 407.12 18.2343

99 97300.89 275.10 97809.74 276.29

99.9 6.2·108 17619.28 6.2·108 17620.00

1.7·1013 15951.40

Burr 95 5.3751 2.0950 6.7041 2.2717

99 248.36 13.3752 277.35 14.6014

99.9 33069.50 160.90 33685.29 162.63

6.7·105 5.1213

logSα 95 2.3570 1.2818 1.6089 1.1205

99 15.7130 3.3234 20.0033 3.8551

99.9 280.03 13.5974 319.64 15.2891

4.6436 0.7726

SαS 95 2176.66 44.5025 2238.36 45.3302

99 7.8·105 839.45 7.9·105 840.66

99.9 0.6·1010 62936.26 0.6·1010 62937.95

9.9·1010 3033.42
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Table A14: Average estimates of forecast errors for “Technology” type aggregated losses. Left panel:
errors between relative upper quantiles; middle panel: errors of forecasted upper quantiles relative
to realized loss; right panel: overall error between forecasted and realized loss. Figures are based
on 10,000 Monte Carlo samples for every year in forecasting period.

Forecasted upper Forecasted upper Overall error:

quantiles vs. upper quantiles vs. actual forecasted

bootstrapped quantiles loss vs. actual loss

quantile MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010) MSE(×1020) MAE(×1010)

LN 95 0.1879 0.4135 0.2029 0.4316

99 3.6536 1.8314 3.7435 1.8571

99.9 136.90 11.1882 137.62 11.2242

1.0549 0.1402

Weib 95 0.0294 0.1624 0.0345 0.1806

99 0.1819 0.4168 0.2022 0.4426

99.9 1.1294 1.0467 1.1985 1.0824

0.0140 0.0535

logWeib 95 0.0439 0.1979 0.0501 0.2162

99 0.3556 0.5804 0.3838 0.6063

99.9 3.1991 1.7705 3.3291 1.8065

0.0272 0.0620

GPD 95 45.7139 5.4619 45.9212 5.4803

99 77821.03 203.46 77829.78 203.49

99.9 5.1 40154.50 5.1·109 40154.53

1.8·1013 2.0·104

Burr 95 1853.93 34.1046 1854.92 34.1228

99 4.2·107 4135.69 4.2·107 4135.71

99.9 1.6·1013 2.3·106 1.6·1013 2.3·106

1.5·1020 5.4·107

logSα 95 0.1901 0.4161 0.2053 0.4344

99 3.3955 1.7774 3.4864 1.8031

99.9 147.59 11.8642 148.36 11.8998

11.9464 0.1610

SαS 95 8.2·1020 1.1·1010 8.2·1020 1.1·1010

99 9.4·1029 3.7·1014 9.4·1029 3.7·1014

99.9 1.1·1043 1.2·1021 1.1·1043 1.2·1021

6.0·1061 2.9·1028
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Table A15: LR statistic and p-values (in square brackets) for “Relationship” type aggregated losses
in the 7-year forecast period.

LR statistic and p-value average p-value

Year 1 2 3 4 5 6 7

LN 0.3579 2.3588 1.9911 1.4466 2.0630 0.3518 2.5297

[0.836] [0.308] [0.370] [0.485] [0.357] [0.839] [0.282] [0.497]

Weib 0.0619 1.5978 0.8392 1.2538 2.0261 0.1808 2.7085

[0.970] [0.450] [0.657] [0.534] [0.363] [0.914] [0.258] [0.592]

logWeib 0.1383 1.8481 1.2071 1.3434 2.1209 0.2174 2.5593

[0.933] [0.397] [0.547] [0.511] [0.346] [0.897] [0.278] [0.559]

GPD 0.6618 3.0483 3.2423 1.6954 1.8640 0.7013 2.4631

[0.718] [0.218] [0.198] [0.428] [0.394] [0.704] [0.292] [0.422]

Burr 0.6511 2.8692 3.3531 1.6386 1.7583 0.7717 2.5161

[0.722] [0.238] [0.187] [0.441] [0.415] [0.680] [0.284] [0.424]

logSα 0.3433 1.6031 2.0380 5.6319 2.1734 0.3646 9.4886

[0.842] [0.449] [0.361] [0.060] [0.337] [0.833] [0.009] [0.413]

SαS 0.2621 24.6599 2.5327 1.1871 1.3401 0.3538 2.2774

[0.877] [<0.005] [0.282] [0.552] [0.512] [0.838] [0.320] [0.483]

Table A16: LR statistic and p-values (in square brackets) for “Human” type aggregated losses in
the 7-year forecast period.

LR statistic and p-value average p-value

Year 1 2 3 4 5 6 7

LN 0.5022 4.6756 0.1023 2.5790 0.9439 4.7796 0.7730

[0.778] [0.097] [0.950] [0.275] [0.624] [0.092] [0.679] [0.499]

Weib 0.2541 3.7590 0.1958 2.5951 0.6551 4.7877 0.7553

[0.881] [0.153] [0.907] [0.273] [0.721] [0.091] [0.686] [0.530]

logWeib 0.3783 4.4179 0.0884 2.4636 0.8178 4.4334 0.7605

[0.828] [0.110] [0.957] [0.292] [0.664] [0.109] [0.684] [0.520]

GPD 0.8031 5.4367 0.1657 2.5592 1.3462 5.3795 0.8338

[0.669] [0.066] [0.921] [0.278] [0.510] [0.068] [0.659] [0.453]

Burr 0.6539 5.4566 0.2840 2.5620 0.8786 7.4635 0.8278

[0.721] [0.065] [0.868] [0.278] [0.645] [0.024] [0.661] [0.466]

logSα 0.2067 4.5401 0.1326 2.6464 11.1638 50.2250 0.8028

[0.902] [0.103] [0.936] [0.266] [0.004] [<0.005] [0.670] [0.412]

SαS 19.5913 57.8253 16.5836 22.7072 20.0307 ∞ 0.8759

[<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [<0.005] [0.645] [0.092]
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Table A17: LR statistic and p-values (in square brackets) for “Process” type aggregated losses in
the 7-year forecast period.

LR statistic and p-value average p-value

Year 1 2 3 4 5 6 7

LN 4.7303 7.9488 20.5106 ≈0 5.9690 1.2397 7.6575

[0.094] [0.019] [<0.005] [>0.995] [0.051] [0.538] [0.022] [0.246]

Weib 5.8358 9.0067 19.8166 ≈0 5.3046 1.3434 7.1111

[0.054] [0.012] [<0.005] [>0.995] [0.071] [0.511] [0.029] [0.239]

logWeib 5.4614 8.6240 20.0130 ≈0 5.6225 1.2509 7.1481

[0.065] [0.013] [<0.005] [>0.995] [0.060] [0.535] [0.028] [0.243]

GPD 3.3761 7.3430 21.4076 0.0575 6.7186 1.2567 8.0513

[0.185] [0.025] [<0.005] [0.972] [0.035] [0.534] [0.018] [0.253]

Burr 4.4869 8.0195 21.2706 0.0192 6.4037 1.3078 7.1694

[0.106] [0.018] [<0.005] [0.990] [0.041] [0.520] [0.028] [0.243]

logSα 4.7196 8.0265 36.6496 2.5550 14.3856 1.2909 7.7456

[0.094] [0.018] [<0.005] [0.279] [<0.005] [0.524] [0.021] [0.134]

SαS 4.1486 inf inf 0.1850 40.7501 1.6664 23.4444

[0.125] [<0.005] [<0.005] [0.912] [<0.005] [0.435] [<0.005] [0.210]

Table A18: LR statistic and p-values (in square brackets) for “Technology” type aggregated losses
in the 7-year forecast period.

LR statistic and p-value average p-value

Year 1 2 3 4 5 6 7

LN 1.7031 0.7748 7.9165 1.8076 - 3.9816 -

[0.427] [0.679] [0.019] [0.405] [-] [0.137] [-] [0.333]

Weib 1.4969 0.9152 8.5419 1.9915 - 4.1399 -

[0.473] [0.633] [0.014] [0.370] [-] [0.126] [-] [0.323]

logWeib 1.4175 0.9414 8.3460 2.3232 - 4.0876 -

[0.492] [0.625] [0.015] [0.313] [-] [0.130] [-] [0.315]

GPD 2.1113 0.7520 6.8921 1.8079 - 3.6926 -

[0.348] [0.687] [0.032] [0.405] [-] [0.158] [-] [0.326]

Burr 3.1543 0.4183 8.2779 1.3857 - 4.3545 -

[0.207] [0.811] [0.016] [0.500] [-] [0.113] [-] [0.330]

logSα 1.7229 0.7572 7.8918 1.7649 - 3.9782 -

[0.423] [0.685] [0.019] [0.414] [-] [0.137] [-] [0.335]

SαS 4.3899 5.5676 14.5400 5.6148 - 6.4994 -

[0.111] [0.062] [<0.005] [0.061] [-] [0.039] [-] [0.055]
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