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CVaR sensitivity with respect to tail thickness

Abstract

We consider the sensitivity of conditional value-at-risk (CVaR) with
respect to the tail index assuming regularly varying tails and exponen-
tial and faster-than-exponential tail decay for the return distribution.
We compare it to the CVaR sensitivity with respect to the scale param-
eter for stable Paretian, the Student’s t, and generalized Gaussian laws
and discuss implications for the modeling of daily returns and marginal
rebalancing decisions. Finally, we explore empirically the impact on
the asymptotic variability of the CVaR estimator with daily returns
which is a standard choice for the return frequency for risk estimation.

keywords fat-tailed distributions, regularly varying tails, condi-
tional value-at-risk, marginal rebalancing, asymptotic variability



1 Introduction

There is substantial empirical evidence that financial returns exhibit fat-tails
and excess kurtosis after accounting for the clustering of volatility and auto-
correlation. Different models have been suggested to explain these empirical
facts. Mandelbrot (1963) and Fama (1965) proposed the stable Paretian dis-
tribution which was later incorporated as a building block in GARCH-type
processes, see for example Mittnik et al. (2002) and Mittnik and Paolella
(2003).

Stable Paretian distributions are fat-tailed; they can explain the observed
skewness and excess kurtosis of financial returns and represent a clear im-
provement over the Gaussian distribution, see Rachev and Mittnik (2000)
for empirical studies and further references. Models based on Stable Pare-
tian laws, however, do not explain the empirical fact that lower-frequency
returns tend to have a higher tail index, see Samorodnitsky and Grabchak
(2010). Stable distributions have an infinite variance and this creates tech-
nical difficulties in other areas such as option pricing and asset allocation
modeling. Recently, tempered stable distributions have been suggested as
an alternative model which has some of the attractive features of the class of
stable laws but is more flexible, see Kim et al. (2008) and Kim et al. (2010)
for additional details.

Apart from stable and tempered stable laws, other distributional models
have been suggested in the literature and are used by practitioners. One
alternative is the class of hyperbolic distributions which contains fat-tailed
and skewed representatives and can be considered as a building block in
financial models both in a discrete and continuous setting, see Bibby and
Sorensen (2003). This class contains the Student’s t distribution which is
attractive to practitioners because of its simplicity.

Other examples include distributions used only for tail modeling without
providing a basis for more general models. This category of models includes,
for example, the approach based on extreme value theory. An application to
value-at-risk modeling with a GARCH model for the clustering of volatility
effect is available in Kuester et al. (2006). There are also more ad-hoc models
such as the generalized normal distribution (GND). An application to high-
frequency data is available in Chen et al. (2008). For additional examples
with the Weibull, the Laplace-Gaussian mixture, and other distributions,
see Haas et al. (2006) and Rachev and Mittnik (2000).

An important property distinguishing these classes of models is the rate
of tail decay of the distribution. Stable Paretian distributions exhibit a
power decay with a tail exponent α in 0 < α < 2. Tempered stable laws and
hyperbolic laws have a more involved exponential decay, while the GND
can have an exponential and slower-than-exponential decay depending on
the parameter values. Distinguishing statistically between different types
of tail decay turns out to be a difficult problem. Heyde and Kou (2004)
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report that 5,000 observations (20 years of daily data) are insufficient to
distinguish between exponential-type and power-type tails. Heyde et al.
(2006) conclude that downside risk measures based on tail expectations are
not robust because of the sensitivity to the tail decay assumption. Outside of
academic circles, the lack of robustness is interpreted as a sign of catastrophe
– small changes in the tail parameter lead to huge changes in the tail risk
measure.1

In this paper, our goal is to explore the implications of the lack of robust-
ness for a popular measure of downside tail risk, the conditional value-at-risk
(CVaR). The sensitivity of CVaR with respect to tail thickness is important
for at least two practical problems – marginal rebalancing and stability with
respect to estimation errors. We compare the relative importance of the tail
thickness parameter to the scale parameter in the context of the power tail
decay of the symmetric stable Paretian and the Student’s t distributions
and the exponential and slower-than-exponential decay of the GND. The
GND is chosen because of the varieties of tail decay (including a Gaussian
tail) and because it leads to closed-form expressions for CVaR.

The paper is organized in the following way. We proceed with a de-
scription of the probability distributions and their CVaRs. In Section 3, we
calculate an approximation of the the sensitivity of CVaR with respect to
the tail index assuming regularly varying tails and GND-type tails. Finally,
we discuss the impact of the tail decay assumption on the asymptotic vari-
ance of the CVaR estimator in Section 4 using daily returns. The choice of
daily return frequency is motivated by the fact that this frequency is widely
used for parameter estimation in risk management systems.

2 Fat-tailed models for asset returns

Mandelbrot (1963) strongly rejected normality as a distributional model for
asset returns, conjecturing that financial returns behave like non-Gaussian
stable returns. To distinguish between Gaussian and non-Gaussian stable
distributions, the latter are commonly referred to as “stable Paretian” dis-
tributions or “Levy stable” distributions.

The class of stable distributions is defined by means of their character-
istic functions. With very few exceptions, no closed-form expressions are
known for their densities and cumulative distribution functions (c.d.f.). A
random variable X is said to have a stable distribution, X ∈ Sα(β, σ, µ), if
its characteristic function ϕX(t) = EeitX has the following form

1The exact quote from Nassim Taleb’s blog at http://sethkaufman.posterous.com/

taleb-the-fourth-quadrant-a-map-of-the-limits is: “Parametrizing a power law
lends itself to monstrous estimation errors... Small changes in the “alpha” main parameter
used by power laws leads to monstrously large effects in the tails.”
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ϕX(t) =

{
exp{−σα|t|α(1− iβ t

|t| tan(πα2 )) + iµt}, α 6= 1

exp{−σ|t|(1 + iβ 2
π
t
|t| ln(|t|)) + iµt}, α = 1

(1)

where t
|t| = 0 if t = 0.

The formula in (1) implies that stable laws are described by four param-
eters: (1) α, called the index of stability, which determines the tail weight
or density’s kurtosis with 0 < α ≤ 2, (2) β, called the skewness parameter,
which determines the density’s skewness with −1 ≤ β ≤ 1, (3) σ > 0 which
is a scale parameter, and (4) µ ∈ R which is a location parameter. Stable
distributions allow for skewed distributions when β 6= 0 and when β = 0, the
distribution is symmetric around µ. The Gaussian distribution is a stable
distribution with α = 2. Stable Paretian laws have fat tails, meaning that
extreme events have high probability relative to a normal distribution when
α < 2. The power decay of the tail of non-Gaussian stable distributions is
described by the following relation2

lim
λ→∞

λαP (X ≤ −λ) =
Γ(α) sin(πα/2)

π

(
1− β

2

)
σα. (2)

Of the four parameters, α and β are most important as they identify two
fundamental properties that are atypical of the normal distribution — heavy
tails and asymmetry.

The Student’s t distribution is very often used in practice for a very
pragmatic reason – it is simple to work with. We consider the location-scale
augmented version which is defined in the following way: X ∈ t(ν, σ, µ) if
X = σY + µ, where Y has the density

f(x) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) (1 +
x2

ν

)− ν+1
2

, x ∈ R. (3)

where ν > 0 is the degrees of freedom parameter, σ > 0, and µ ∈ R are the
scale and the location parameters, respectively. The density of the Student’s
t distribution decays like a power law. A more precise result concerning the
decay of the tail of the distribution is given in the next theorem.

Theorem 1. Suppose that X ∈ t(ν, σ, 0). Then, the following limit
relation holds,

lim
λ→∞

λνP (X ≤ −λ) =
Γ
(
ν+1

2

)
σν

νΓ(ν/2)
√
π
. (4)

2For more details on the properties of stable distributions, see Samorodnitsky and
Taqqu (1994).
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Proof. First, we express the probability P (X ≤ −λ) in terms of the incom-
plete beta function taking advantage of the substitution t = ν

ν+(x/σ)2
,

P (X ≤ −λ) =
1

σ

Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) ∫ ∞
λ

(
1 +

(x/σ)2

ν

)− ν+1
2

dx

=
1

2

B ν
ν+(λ/σ)2

(ν/2, 1/2)

B(ν/2, 1/2)
,

where Bx(a, b) =
∫ x

0 t
a−1(1 − t)b−1dt is the incomplete beta function and

B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function. The incomplete beta function is

related to the hypergeometric function through the equality Bx(a, b) =
xa

a F (a, 1− b, a+ 1, x), see Abramowitz and Stegun (1972). From the power
series expansion of the hypergeometric function given in Abramowitz and
Stegun (1972), we can construct the following first-order approximation of
the incomplete beta function for small values of x,

Bx(a, b) =
xa

a
+ o(x).

As a consequence,

P (X ≤ −λ) =
1

νB(ν/2, 1/2)

(
1 +

(λ/σ)2

ν

)− ν
2

+ o((λ/σ)−ν), (5)

which leads to the limit

lim
λ→∞

(λ/σ)νP (X ≤ −λ) =
1

νB(ν/2, 1/2)
.

The result in (4) is obtained after expressing the beta function in terms of
the gamma function and noticing that Γ(1/2) =

√
π.

Concerning GND, we adopt the following definition: X ∈ GN(κ, σ, µ) if
it has the density

f(x) =
κ

21+ 1
κσΓ(1/κ)

e−
1
2 |x−µσ |

κ

, x ∈ R (6)

where κ > 0 determines the tail behavior, σ > 0, and µ ∈ R are the scale and
the location parameters, respectively. If κ = 1, then GND reduces to the
Laplace distribution which has an exponential decay of the density; if κ = 2,
then we obtain the Gaussian distribution. Therefore, κ ∈ (1, 2) determines
a faster than exponential and slower than Gaussian decay of the density
and κ ∈ (0, 1) determines a slower than exponential decay. If κ > 2, then
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the tails of the distribution converge faster than the tails of the Gaussian
distribution. At the limit, as κ → ∞, GN(κ, σ, µ) converges to a uniform
distribution defined on the interval (µ− σ, µ+ σ).

A more precise result on the tail decay of GND is provided in the next
theorem.

Theorem 2. Suppose that X ∈ GN(κ, σ, 0). Then, the following limit
relation holds,

lim
λ→∞

λκ−1e
1
2(λσ )

κ

P (X ≤ −λ) =
σκ−1

2
1
κΓ
(

1
κ

) . (7)

Proof. First, we derive an expression for P (X ≤ −λ) in which λ > 0,

P (X ≤ −λ) =

∫ −λ
−∞

κ

21+ 1
κσΓ(1/κ)

e−
1
2(−tσ )

κ

dt

=
1

2Γ
(

1
κ

) ∫ ∞
λκ/(2σκ)

y1/κ−1e−ydy

=
1

2Γ
(

1
κ

)Γ

(
1

κ
,
1

2

(
λ

σ

)κ)
where the second equality follows from the substitution y = 1

2

(
− t
σ

)κ
and

Γ(s, x) =
∫∞
x ts−1e−tdt denotes the upper incomplete gamma function. The

function Γ(s, x) has the following asymptotic behavior,

lim
x→∞

Γ(s, x)

xs−1e−x
= 1,

see Abramowitz and Stegun (1972). Applying this property to the expression
for P (X ≤ −λ), we obtain

lim
x→∞

Γ
(

1
κ ,

1
2

(
λ
σ

)κ)[
1
2

(
λ
σ

)κ]1/κ−1
e−

1
2(λσ )

κ
= 1.

which leads to the result in equation (7).

2.1 CVaR and fat-tailed distributions

In this section, we include the results for CVaR of fat-tailed distributions
which we use in the paper. CVaR is defined as the average loss provided
that the loss is larger than a quantile at a given probability level,

CV aRε(X) = −1

ε

∫ ε

0
F−1
X (p)dp (8)
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where F−1
X (p) = inf{x : P (X ≤ x) ≥ p} denotes the inverse distribution

function of the random variable rp. CVaR was suggested as a superior alter-
native to value-at-risk because it satisfies the coherence axioms in Artzner
et al. (1998).

Working numerically with the definition in (8) is difficult because the
quantile function is unbounded for probabilities close to zero. Therefore,
we have to calculate the integral in the definition for every distributional
assumption for X.

Stoyanov et al. (2004) calculated the CVaR for stable distributions. The
result for the symmetric case is provided in the following theorem.

Theorem 3. If X ∈ Sα(σ, 0, µ) with α > 1 and qε 6= 0 is the ε-quantile of
(X−µ)/σ, then CV aRε(X) admits the representation CV aRε(X) = σAε+µ,
where

Aε =
α

1− α
|qε|
πε

∫ π/2

0
g(θ) exp

(
−|qε|α/(α−1)v(θ)

)
dθ (9)

where

g(θ) =
sin (α− 2)θ

sinαθ
− α cos2 θ

sin2 αθ

v(θ) =

(
cos θ

sinαθ

) α
α−1 cos (α− 1)θ

cos θ

If qε = 0, then Aε =
2Γ(α−1

α
)

π .

A much simpler and easy to establish expression exists for the CVaR of
the Student’s t distribution. The result is provided in the next theorem and
a proof can be found in Stoyanov and Rachev (2008a).

Theorem 4. If X ∈ t(ν, σ, µ), with ν > 1, then CV aRε(X) admits the
representation CV aRε(X) = σBε + µ, where

Bε =
1

ε

Γ
(
ν+1

2

)
Γ
(
ν
2

) √
ν

(ν − 1)
√
π

(
1 +

q2
ε

ν

) 1−ν
2

, (10)

in which qε is the ε-quantile of (X − µ)/σ.

Finally, we calculate the CVaR for the GND which, as far as we know,
is not available elsewhere.

Theorem 5. If X ∈ GND(κ, σ, µ), then for any ε < 0.5, CV aRε(X)
admits the representation CV aRε(X) = σCε + µ, where

Cε =
1

ε

2
1
κ
−1

Γ
(

1
κ

)Γ

(
2

κ
,
(−qε)κ

2

)
(11)
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in which qε is the ε-quantile of (X −µ)/σ and Γ(s, x) =
∫∞
x ts−1e−tdt is the

upper incomplete gamma function.

Proof. Since X has a density, CV aRε(X) = σCV aRε(Y )+µ = −σE(Y |Y ≤
qε) + µ, where Y = (X − µ)/σ denotes the standardized distribution. As-
suming ε < 0.5, the conditional expectation is calculated directly,

−E(Y |Y ≤ qε) = −1

ε

∫ qε

−∞

xκ

21+1/κΓ(1/κ)
e−

1
2

(−x)κdx

=
1

ε

2
1
κ
−1

Γ
(

1
κ

) ∫ ∞
(−qε)κ/2

y2/κ−1e−ydy.

(12)

The second expression is obtained after the substitution y = (−x)κ/2 and
the integral is recognized as the upper incomplete gamma function.

3 CVaR and tail thickness sensitivity

Taking advantage of the positive homogeneity and the translation invariance
property, the CVaR derivatives with respect to the distribution parameters
of the models considered in Section 2 equal

∂CV aRε(X)

∂θ1
= σ

∂CV aRε(Y )

∂θ1

∂CV aRε(X)

∂σ
= CV aRε(Y )

∂CV aRε(X)

∂µ
= −1

(13)

where θ1 stands for α, ν or κ and Y = (X − µ)/σ.
In this section, we explore the derivative of CVaR with respect to the

tail thickness parameter, which corresponds to the term ∂CV aRε(Y )/∂θ1

in equation (13), and we compare it to the derivative with respect to the
scale parameter. In the context of marginal rebalancing, this comparison
can indicate which parameter is marginally more significant for a marginal
risk reduction under the technical assumption that the return distributions
of all portfolios belong to one and the same parametric class.

We begin with a general result proving that under the assumption of
regularly varying tails and one technical condition, the sensitivity of CVaR
with respect to tail thickness is bounded. Therefore, under this general
hypothesis which includes the pure power decay, small changes in the tail
thickness parameter cannot lead to huge changes in the risk measure. The
main result is provided in the next theorem.
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Theorem 6. Suppose that X has a regularly varying left tail, P (X ≤
−u) ∼ u−αL(u, α) with α > 1, where L(u, α) is a slowly varying function for
any α. Then, for a sufficiently small ε > 0, the derivative ∂CV aRε(X)/∂α
is approximated by

hε,α(X) = −1

ε

∫ qε

−∞
F (x) log(−x)dx+

1

ε

∫ qε

−∞
F (x)

∂ log(L(−x, α))

∂α
dx (14)

where qε denotes the ε-quantile of X. Furthermore, if ∂L(−x, α)/∂α is a
slowly varying function, then ∂CV aRε(X)/∂α is bounded for any ε > 0.

Proof. We start from the definition of CVaR, take advantage of the substi-
tution y = F (x) and after integration by parts, we obtain

CV aRε(X) = −qε(α) +
1

ε

∫ qε(α)

−∞
F (x)dx. (15)

In this transformation, we assume that F (x) is continuous at x = qε(α).
Using the assumed asymptotic behavior for the left tail, we obtain

CV aRε(X) ≈ −qε(α) +
1

ε

∫ qε(α)

−∞
(−x)−αL(−x, α)dx. (16)

where ε is sufficiently small. The expression in (14) is derived by differenti-
ating the right hand-side of (16) using the chain rule

d

dα

(∫ f(α)

−∞
G(x, α)dx

)
=

∫ f(α)

−∞

∂G(x, α)

∂α
dx+G(f(α), α)f ′(α). (17)

The boundedness of ∂CV aRε(X)/∂α is a consequence of the assumed
regular variation. The strategy is the following one. We consider the follow-
ing bound,

|hε,α(X)| ≤
∣∣∣∣1ε
∫ qε

−∞
F (x) log(−x)dx

∣∣∣∣+

∣∣∣∣1ε
∫ qε

−∞
F (x)

∂ log(L(−x, α))

∂α
dx

∣∣∣∣ ,
(18)

and focus on the first term demonstrating that it is bounded. The same
reasoning holds for the second term. Finally, ∂CV aRε(X)/∂α is bounded
because it is in a neighbourhood of hε,α(X).

The integrand of the first term in (14) can be represented as

F (x) log(−x) ∼ (−x)−αL(−x) log(−x)

for a sufficiently small x. The term L(−x) log(−x) is a product of two
slowly varying functions and, as a consequence, is a slowly varying function.
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Therefore, F (x) log(−x) can be viewed as a regularly varying tail with the
same index α. Consider the following upper bound

∣∣∣∣∫ b

−∞
F (x) log(−x)dx

∣∣∣∣ ≤ |F (b) log(−b)dx|+
∣∣∣∣∫ b

−∞
xd[F (x) log(−x)]

∣∣∣∣ .
The first term is a constant. By assumption, α > 1 and as a consequence
the second term ∣∣∣∣∫ b

−∞
xd[F (x) log(−x)]

∣∣∣∣ <∞
for any b using a theorem in Feller (1971).

The same conclusion holds for the second term in (18). First, notice that

∣∣∣∣∫ qε

−∞
F (x)

∂ log(L(−x, α))

∂α
dx

∣∣∣∣ ≤ ∫ qε

−∞
F (x)

∣∣∣∣∂ log(L(−x, α))

∂α

∣∣∣∣ dx.
The same reasoning can be used to demonstrate that the upper bound is
finite using the assumption that ∂ log(L(−x, α))/∂α is a slowly varying func-
tion.

In the theorem, we assumed that the slowly varying component is also
a function of the tail thickness parameter. Under the assumption that
L(u, α) = CαL(u), we obtain the following simpler result.

Corollary 1. If P (X ≤ −u) ∼ Cαu
−αL(u) with α > 1, where Cα is a

constant, then

hε,α(X) = −1

ε

∫ qε

−∞
F (x) log(−x)dx+

Bα
ε

∫ qε

−∞
F (x)dx, (19)

in which Bα = d logCα/dα. An equivalent representation in terms of con-
ditional moments is also available,

hε,α(X) =E(X log(−X)|X ≤ qε)− qε log(−qε)
+Bα(qε − E(X|X ≤ qε)).

Proof. Integrating by parts and taking advantage of (x log(−x) + 1)′ =
log(−x), we obtain the conditional moments representation.

In the particular case of stable Paretian distributions, we obtain the
following corollary.
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Corollary 2. If X ∈ Sα(0, 1, 0) with α > 1, then

hε,α(X) = −Cα
ε

[
(−qε)1−α log (−qε)

α− 1
+

(−qε)1−α

(α− 1)2

]
+
C ′α
ε

(−qε)1−α

α− 1

where Cα = Γ(α) sin (πα/2) /(2π), C ′α = dCα/dα and Γ(x)stands for the
gamma function.

Proof. If X ∼ Sα(0, 1, 0), then P (X ≤ −u) ∼ Cαu−α, where

Cα = Γ(α) sin (πα/2) /(2π).

The corollary is obtained after a direct calculation of the two integrals in
(19).

It is possible to prove a similar set of results for GND. The result below
is the analogue of Theorem 6 assuming GND-type tails.

Theorem 7. Suppose that X has a tail with an asymptotic behavior,

P (X ≤ −u) ∼ Cκu1−κe−
uκ

2 with κ > 0, where Cκ is a constant. Then, for a
sufficiently small ε > 0, the derivative ∂CV aRε(X)/∂κ is approximated by

hε,κ(X) = −1

ε

∫ qε

−∞
F (x) log(−x)

(
1 +

1

2
(−x)κ

)
dx+

Bκ
ε

∫ qε

−∞
F (x)dx (20)

where qε denotes the ε-quantile of X and Bκ = d logCκ/dκ. Furthermore,
the derivative ∂CV aRε(X)/∂κ is bounded for any ε > 0 on condition that
Bκ is bounded.

Proof. Using the assumed asymptotic behavior of P (X ≤ x) and the ex-
pression in (15), we obtain

CV aRε(X) ≈ −qε(κ) +
1

ε

∫ qε(κ)

−∞
Cκ(−x)1−κe−

(−x)κ
2 dx. (21)

We calculate the derivative ∂G(x,κ)
∂κ in (17),

∂G(x, κ)

∂κ
= C ′κ(−x)1−κe−

(−x)κ
2 − Cκ(−x)1−κe−

(−x)κ
2 log(−x)

(
1 +

1

2
(−x)κ

)
=
C ′κ
Cκ

F (x)− CκF (x) log(−x)

(
1 +

1

2
(−x)κ

)
,

where C ′κ = dCκ/dκ. As a next step, we apply the chain rule in (17) to the
expression in (21) and we obtain the result in equation (20).

Concerning the boundedness of the derivative, we consider the two terms
in (20) separately. Assume that qε < 0 which is not restrictive since the

12



theorem considers the case of small ε. If Bκ is bounded, then the second
term in (20) is bounded because the approximation through the asymptotic
behavior of the tail

∫ qε

−∞
F (x)dx ≈ Cκ

∫ ∞
−qε

u1−κe−
uκ

2 du

= Cκ
2

2
κ
−1

κ

∫ ∞
(−qε)κ/2

z2/κ−2e−zdz <∞

which follows from the substitution z = uk/2.
The first term can be handled in a similar manner taking advantage of

the inequality log(x) ≤ 1 + x.

∫ qε

−∞
F (x) log(−x)

(
1 +

1

2
(−x)κ

)
dx ≤

∫ ∞
−qε

F (−u)(1 + u)

(
1 +

1

2
uκ
)
du

≈ Cκ
∫ ∞
−qε

u1−κe−
uκ

2 (1 + u)

(
1 +

1

2
uκ
)
du

= Cκ
2

2−κ
κ

κ

∫ ∞
(−qε)k/2

t
1−κ
κ e−t(1 + 21/κt1/κ) (1 + t) dt <∞

The last inequality follows because the last integral reduces to a sum of
integrals of the type

∫∞
x tαe−tdt which is finite for x > 0.

Corollary 3. Suppose that X ∈ GN(κ, 1, 0). Then, the constant Cκ =
(21/κΓ(1/κ))−1 and the result in equation (20) holds with

Bκ =
1

κ2

(
log 2 +

Γ′(1/κ)

Γ(1/κ)

)
<∞.

Furthermore, |Bκ| <∞ for any κ > 0.

Proof. The constant Cκ is calculated in equation (7) and the calculation
of Bκ is straightforward. Bκ is bounded for any positive κ because the
derivative of the gamma function is bounded for any κ > 0.

Since the derivative of CVaR with respect to tail thickness for regularly
varying tails and for the GND tails is finite, it is interesting to check how it
compares to the derivative with respect to the scale parameter. We consider
the following ratio

σ̃(ε) =
CV aRε(Y )

|∂CV aRε(Y )/∂θ1|
(22)
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where Y = (X−µ)/σ and θ1 is the tail thickness parameter, which does not
depend on the scale parameter. It can be interpreted as the value of the scale
parameter which balances the sensitivities to tail thickness and scale. We
demonstrate that for the three distribution classes, σ̃(ε) becomes arbitrarily
small when ε decreases. This implies that even though ∂CV aRε(Y )/∂θ1 is
finite for ε > 0, it can become arbitrarily larger than ∂CV aRε(Y )/∂σ for
sufficiently small ε. This is not a surprising result since the deeper we go into
the tail, the more sensitive CVaR becomes with respect to tail thickness. As
a by-product, we obtain that ∂CV aRε(Y )/∂θ1 increases indefinitely when
ε→ 0 because limε→0CV aRε(Y ) =∞.

Theorem 8. Let X ∈ Sα(σ, 0, µ) with α > 1. Then, limε→0 σ̃(ε) = 0.
Furthermore, the rate of convergence is given by

lim
ε→0

log(−qε)σ̃(ε) = α (23)

where qε is the ε-quantile of Y = (X − µ)/σ.

Proof. We consider the limit as ε approaches zero, therefore we can calculate
the numerator taking advantage of the asymptotic tail behavior. Integration
by parts and the assumption that α > 1 lead to

CV aRε(Y ) = −qε +
1

ε

Cα(−qε)1−α

α− 1

where qε is the ε-quantile of Y . Taking advantage of the result in Corollary
2, we obtain

σ̃(ε) = −
−qε + 1

ε
Cα(−qε)1−α

α−1

−Cα
ε

[
(−qε)1−α log (−qε)

α−1 + (−qε)1−α
(α−1)2

]
+ C′α

ε
(−qε)1−α
α−1

= − (α− 1)ε(−qε)α + Cα

−Cα
[
log (−qε) + 1

(α−1)

]
+ C ′α

.

The asymptotic result in equation (2) indicates that ε(−qε)α = P (Y ≤
qε)(−qε)α → Cα. Therefore, σ̃(ε)→ 0 because the logarithm in the denomi-
nator is unbounded as ε→ 0.

The rate of convergence is established by the same argument taking
advantage of the expression,

log(−qε)σ̃(ε) = − (α− 1)ε(−qε)α + Cα

−Cα
[
1 + 1

log(−qε)(α−1)

]
+ C′α

log(−qε)

. (24)

As a consequence, log(−qε)σ̃(ε)→ (α−1)Cα+Cα
Cα

= α.
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A similar result can be established for the Student’s t distribution. It is
contained in the next theorem.

Theorem 9. Let X ∈ t(ν, σ, µ) with ν > 1. Then, limε→0 σ̃(ε) = 0.
Furthermore, the rate of convergence is given by

lim
ε→0

log(−qε)σ̃(ε) = ν, (25)

where qε is the ε-quantile of Y = (X − µ)/σ.

Proof. The numerator of σ̃(ε) is computed explicitly in (10). We take ad-
vantage of an intermediate result in equation (5) and (19) in order to cal-
culate the denominator. We can use the result in equation (19) because
the asymptotic behavior in (4) implies a tail decay of the type P (X ≤
λ) ∼ Cνx

−ν , where Cν = (νB(ν/2, 1/2))−1. After canceling the constant
(B(ν/2, 1/2)/ε)−1 appearing in both the numerator and the denominator,
we obtain

σ̃(ε) =

√
ν

(ν−1)

(
1 + q2ε

ν

) 1−ν
2

1
ν

∫ qε
−∞

(
1 + t2

ν

)− ν
2

log(−t)dt−Bν
∫ qε
−∞

(
1 + t2

ν

)− ν
2
dt

=

√
ν

2

(
1 + q2ε

ν

)− 1
2
− ν

2 2(−qε)
ν

1
ν

(
1 + q2ε

ν

)− ν
2

log(−qε)−Bν
(

1 + q2ε
ν

)− ν
2

=

√
ν
ν

1
ν

(
1
q2ε

+ 1
ν

) 1
2

log(−qε)−Bν
(

1
q2ε

+ 1
ν

) 1
2

in which the second equality follows after applying l’Hôpital’s rule. The
constant Bν = d logCν/dν can be calculated explicitly,

Bν = −1

ν
− Γ′(ν/2)

2Γ(ν/2)
+

Γ′((ν + 1)/2)

2Γ((ν + 1)/2)
.

It follows that |Bν | <∞ if ν > 0 since the derivative of the gamma function
is bounded if ν > 0. As a consequence, σ̃(ε)→ 0 as ε→ 0.

The asymptotic behavior is derived from

log(−qε)σ̃(ε) =

√
ν
ν

1
ν

(
1
q2ε

+ 1
ν

) 1
2 − Bν

log(−qε)

(
1
q2ε

+ 1
ν

) 1
2

.

As a consequence, log(−qε)σ̃(ε)→ ν as ε→ 0.
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A similar result can be established for GND. It is contained in the next
theorem.

Theorem 10. Let X ∈ GN(κ, σ, µ). Then, limε→0 σ̃(ε) = 0. Further-
more, the rate of convergence is given by

lim
ε→0

log(−qε)σ̃(ε) = κ, (26)

where qε is the ε-quantile of Y = (X − µ)/σ.

Proof. We use the first equality in equation (12) to calculate the numerator
of σ̃(ε). The denominator is calculated by taking advantage of the result
in equation (20) and the asymptotic behavior of the tail given in (7) which
implies that Cκ = [21/κΓ(1/κ)]−1 and Bκ = d logCκ/dκ. After canceling
out the terms involving Cκ, we obtain

σ̃(ε) =
κ
2

∫ qε
−∞(−x)e−

(−x)κ
2 dx

−
∫ qε
−∞(−x)1−κe−

(−x)κ
2

(
Bκ − log(−x)

(
1 + (−x)κ

2

))
dx

=
κ
2 (−qε)e−

(−qε)κ
2

−(−qε)1−κe−
(−qε)κ

2

(
Bκ − log(−qε)

(
1 + (−qε)κ

2

))
=

κ
2

−Bκ(−qε)−κ + log(−qε)
(
(−qε)−κ + 1

2

)
in which the second equality follows after applying l’Hôpital’s rule. The
constant Bκ is bounded and can be calculated, see Corollary 3. As a conse-
quence σ̃(ε)→ 0 as ε→ 0.

The rate of convergence is readily established from the equality

log(−qε)σ̃(ε) =
κ
2

−Bκ(log(−qε))−1(−qε)−κ +
(
(−qε)−κ + 1

2

) .
In effect, log(−qε)σ̃(ε)→ κ.

The convergence rates in (23), (25), and (26) imply that σ̃(ε) decreases
relatively slowly when X follows one of the three distribution models con-
sidered in the paper. The limit in the three cases equals the corresponding
tail exponent meaning that within a given distribution class, convergence is
asymptotically slower for larger values of the tail exponent.

Figure 1 provides a numerical illustration of the convergence rate. The
top plot shows σ̃(ε) as a function of the tail index α for different choices of
tail probability in the stable Paretian case. The derivative ∂CV aRε(Y )/∂α
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is calculated numerically from the expression in Theorem 3. The plot illus-
trates that the convergence rate slows down at different values of ε depending
on the tail index. Thus, ε = 0.01, which would be a typical choice for the
tail probability in practice, leads to σ̃(ε) > 0.2 when α > 1.4. This has
interesting practical implications which we discuss in the next section. The
reason for this behavior is that in (24) Cα → 0 as α→ 2, implying that the
logarithmic decay appears asymptotically for very small ε when α is close
to 2.

The middle and the bottom plots in Figure 1 show σ̃(ε) calculated nu-
merically using the expressions in Theorems 4 and 5 assuming the Student’s
t distribution and GND, respectively. We notice a similar behavior. Even
ε = 0.001, which is very deep in the tail for all practical purposes, leads to
σ̃(ε) > 1 and σ̃(ε) > 0.25 for the Student’s t distribution and GND, respec-
tively. Comparing these numbers directly has to be done carefully because
they correspond to different parametric classes in which the tail thickness
parameter has a different function. For example, for one and the same tail
probability, we notice that σ̃(ε) for the Student’s t model is larger than σ̃(ε)
for the stable Paretian model. This is in agreement with the fact that the
Student’s t tails for ν > 3 decay more quickly than stable Paretian tails
even though both tails decay asymptotically according to a power law. We
cannot, however, conclude that any other tail decay slower than the power
decay leads to a smaller σ̃(ε) for a fixed ε. Even though there is no contra-
diction comparing the top plot to the middle plot, this conclusion would be
wrong even for the tails decaying according to a power law for two reasons.
First, the power decay is asymptotic, P (X ≤ −u) ∼ u−αL(u, α). Second,
the slowly varying component L(u, α) has an impact and can be different
for different parametric families.

The bottom plot illustrates that a faster-than-exponential tail decay can
lead to higher tail sensitivities relative to the scale sensitivity if compared
to the slower power tail decay of the Student’s t distribution even for tail
probabilities as small as ε = 0.001.

Therefore, the tail thickness sensitivity of CVaR is a feature of the para-
metric model and a special focus on a particular type of tail decay is not
relevant in this context. In order to be able to compare across the three
parametric models, it is necessary first to fit the distribution parameters on
real data.

4 Tail thickness sensitivity and CVaR estimator

In this section, we consider the link between CVaR sensitivity with respect
to distribution parameters and the problem of CVaR estimation from a sam-
ple of observations. Stoyanov and Rachev (2008b) prove that the asymptotic
distribution of the empirical CVaR estimator is a totally skewed to the right
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stable law if the tails are regularly varying with an index α ∈ (1, 2). How-
ever, if we assume a parametric model which results in a CVaR expression
differentiable with respect to the distribution parameters, the limit behav-
ior changes if the estimator of the distribution parameters is asymptotically
normal. Under this assumption, the classical central limit theorem argument
leads to

n1/2(CV aRε(X, θ̂)− CV aRε(X, θ))
w→ N(0,∇′Σ∇) (27)

where θ is a k-dimensional vector of parameters,

∇ =

(
∂CV aRε(X, θ)

∂θ1
, . . . ,

∂CV aRε(X, θ)

∂θk

)
,

and Σ = {σij} denotes the asymptotic covariance matrix of the parameter

estimator θ̂. An example of an asymptotically normal estimator for the
three distribution classes which we consider in the paper is the maximum
likelihood method if θ is in the interior of the parameter space.3

The asymptotic variance in (27),

∇′Σ∇ =
k∑
i=1

(
∂CV aRε(X, θ)

∂θi

)2

σ2
i +

∑
i 6=j

∂CV aRε(X, θ)

∂θi

∂CV aRε(X, θ)

∂θj
σij ,

where σ2
i = σii, contains both the derivative of the risk measure and the

asymptotic covariance matrix of the estimator. As a consequence, it makes
sense to compare the terms (∂CV aR/∂θi1)2σ2

i1
and (∂CV aR/∂θi2)2σ2

i2
cor-

responding to the tail thickness and the scale parameters respectively for
different values of the tail probability ε. In fact, we consider the following
ratio,

r =
|∂CV aR/∂θi1 |σi1
|∂CV aR/∂θi2 |σi2

(28)

where i1 corresponds to the tail thickness parameter and i2 corresponds to
the scale parameter. The ratio in (28) compares the relative size of the
corresponding two terms in the asymptotic variance of CVaR. Generally, a
smaller derivative can be compensated for by a larger asymptotic variance σii
and vice versa. Moreover, it is interesting to see how the ratio changes with
the tail probability. On the basis of the results in Section 3, the numerator
is expected to grow faster than the denominator for smaller ε.

3In the case of stable distributions, there are no closed-form expressions for the den-
sity function. We employ the FFT-based approach pioneered in Mittnik et al. (1999) to
construct an approximation of the density in order to calculate numerically the likelihood
function. Alternative approaches exist as well, see Doganoglu and Mittnik (1998) for a
polynomial-based approximation.
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We carry out an empirical study in which we compare the two compo-
nents in the asymptotic variance of the CVaR estimator corresponding to
the tail thickness and the scale parameters for stable Paretian, Student’s t,
and GND laws. We also calculate the ratio in (22) for the fitted distributions
and compare it to the fitted scale parameter in order to verify how CVaR
tail thickness sensitivity compares with CVaR scale sensitivity in a real-life
situation.

In the empirical study, we consider the daily returns of the constituents of
the German DAX 30 index in the period from January 1, 2008 to January 1,
2010 which includes the latest financial crisis. In order to clean the clustering
of volatility effect, we fit first a GARCH(1,1) model,

yt = µ+ et

et = σtεt

σ2
t = K + aσ2

t−1 + bet−1

(29)

assuming a Student’s t distributed residual, which is consistent with the
assumption of a fat-tailed residual process. Then, we fit a stable law and
a GND to the observed residuals. Finally, we calculate a forecast for the
volatility

σ̂2
T+1 = K̂ + âσ̂2

T−1 + b̂eT−1

from the fitted values and multiply the scale of the fitted distribution in order
to obtain the distribution parameters of the conditional return distribution
for the time instant T + 1 as of time T .

Table 1 provides a summary about the fitted parameters for the 30 con-
stituents. We report the interval containing 95% of the fitted values which
is obtained by truncating the smallest 2.5% and the largest 2.5% of them.

In order to compare the relative impact of tail thickness, we consider
three cases – with a small, medium, and large tail thickness parameter. We
choose three stocks with a stable Paretian tail index equal to α = 1.69, α =
1.8, and α = 1.99, respectively. Note that a smaller tail index corresponds
to a fatter tail.

Next, we identify three stocks from the DAX 30 universe with stable tail
indices close to these values and we fit a stable Paretian, Student’s t, and
GND law using the maximum likelihood estimator.4 The corresponding fit-
ted tail thickness and scale parameters are given in Table 2. Certainly, the
fitted tail indices imply different tail decay. For example, in the small tail
index case, κ̂ = 1.07 implies an exponential decay while the fitted Student’s

4The three stocks are the following ones: Merck Group is the stock with a tail index
equal to α = 1.69, Fresenius SE is the the stock with a tail index equal to α = 1.8, and
Fresenius Medical Care is the the stock with a tail index equal to α = 1.99.
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t and stable Paretian laws imply a power decay with different indices. Com-
paring the fitted scale parameters in all three cases to σ̃(ε) in Figure 1, we
find that even for ε = 0.01 the fitted scale parameters are about one order of
magnitude smaller than σ̃(ε). Since σ̃(ε) is the value of the scale parameter
leading to equal CVaR tail thickness and scale sensitivities, this implies that
the CVaR derivative with respect to the tail thickness parameter is an order
of magnitude smaller than the CVaR derivative with respect to the scale pa-
rameter irrespective of the model for tail probabilities as small as ε = 0.01.
Therefore, at least as far as stable Paretian, Student’s t, or GND laws are
concerned, small errors in the scale parameter lead to larger deviations in
CVaR than small errors in the tail thickness parameter.

This conclusion holds when fitting the distributions to daily data. If
the frequency is lower, then, generally, the fitted scale parameter increases
while the fitted tails are less thick and vice versa for higher frequencies. As
a consequence, it is not clear if the same conclusion will hold for higher or
lower frequency returns.

In the context of marginal rebalancing, this observation has the follow-
ing implication assuming that the portfolio daily return distribution has a
similar tail behavior and scale. Reducing marginally the scale parameter of
the portfolio return distribution through a marginal change in the portfolio
weights is a more efficient strategy to control portfolio CVaR than reducing
marginally tail thickness.

Figure 2 compares the three models in terms of the ratio given in (28).
The left column contains plots of the ratio calculated for tail probabilities
ε ∈ [0.01, 0.4] for the three stocks with a large, medium, and small tail index
and the right column contains the corresponding plots of the asymptotic
standard deviation of the CVaR estimator. A thicker tail (a smaller tail in-
dex) implies a relatively higher asymptotic variability due to the tail index
parameter relative to the scale parameter. The ratio is smallest for GND if
ε < 0.3 in the medium and small tail index cases which indicates that the
asymptotic variance of the tail index estimator for GND is much smaller.
An assumption of a fatter tail, however, does not necessarily lead to a CVaR
estimator with a larger asymptotic variance for all ε. The asymptotic vari-
ance of the GND based CVaR is larger than that of the Student’s t based
CVaR for almost all ε in the small tail index case.

For the three models, decreasing the tail probability results in more
variable CVaR estimators and also in a higher variability due to the tail
index parameter, which is a natural result. We can also conclude that for
very small tail probabilities, e.g. ε < 0.01, the models assuming fatter tails
lead to a larger proportion in the asymptotic standard deviation due to
the tail thickness parameter and also to relatively larger total asymptotic
standard deviation.

Another impact of the different tail assumptions, as suggested by the
criticism in Heyde et al. (2006), concerns the estimated CVaR. Figure 3

20



shows the estimated CVaR as a function of the tail probability ε ∈ [0.01, 0.1]
for the three stocks with a large, medium, and small tail index compared to
the historical CVaR estimated directly from the sample with no parametric
assumptions. Figure 4 shows the fitted tails compared to a non-parametric
kernel estimate of the tail. Generally, the medium and the small cases
indicate that a more fat-tailed model implies a higher CVaR if ε is small
enough, in this example if ε < 0.05. It is, however, apparent that questioning
the functional form of the tail decay is not appropriate. On the middle and
bottom plots of Figure 3, Student’s t based CVaR generally underestimates
the historical CVaR and stable Paretian CVaR generally overestimates the
historical CVaR. Therefore, it is possible to find conservative and optimistic
models even assuming only a power tail decay. As a result, the focus should
be on choosing an appropriate parametric model based on arguments other
than the particular type of tail decay. For example, a methodology for CVaR
back-testing represents one possible approach. It may result in models with
different functional forms of tail decay being statistically indistinguishable,
which is the case with the top plot on Figure 3.

Nevertheless, it is clear that the smaller ε is, the more significant the
bias in the CVaR estimate can be and, therefore, leading to a higher model
risk arising from a potential misspecification of the distributional model. As
a consequence, constructing a realistic heavy-tailed CVaR model is a non-
trivial exercise especially when the return distribution deviates significantly
from the Gaussian law and when the tail probability is a small number, e.g.
ε < 0.03.

5 Conclusion

In this paper, we considered the problem of lack of robustness of CVaR with
respect to the tail decay hypothesis in the context of stable Paretian, the
Student’s t, and GND laws allowing for a power, exponential, and faster-
than-exponential tail decay. We proved that under the assumption of regular
variation and GND-type tail decay, CVaR has a bounded derivative with re-
spect to the tail index for ε > 0. Therefore, as far as the sensitivity to
the tail index is concerned, small variations in the tail index do not lead to
abnormally large variations in CVaR. We demonstrated that even though
bounded, the tail index derivative increases indefinitely in absolute value
when ε → 0 at a higher rate than the derivative with respect to the scale
parameter for the three distribution models. This implies that the value of
the scale parameter, σ̃(ε), resulting in equal derivatives converges to zero.
The convergence rate, however, is determined by the logarithm of the corre-
sponding quantile function leading to a slow rate. The practical implication
of this result for the three distribution models based on daily returns is that
the estimated scale parameter appears to be an order of magnitude smaller
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than σ̃(ε) for ε ≥ 0.01 resulting in a tail index derivative an order of magni-
tude smaller than the scale parameter derivative. This result indicates that
estimating properly the scale of the distribution is more important than
having a very precise estimate for the tail index. For example, not taking
into account properly the clustering of volatility effect can have an adverse
impact on CVaR. Furthermore, an effective way of reducing marginally port-
folio CVaR is the traditional approach of selling proportionately parts of the
holdings in the risky stocks and buying a risk-free asset.

Finally, we compared the impact of the tail index sensitivity for smaller
ε on the asymptotic standard deviation of the CVaR estimator based on the
maximum likelihood method for the distribution parameters. For the mod-
els assuming a fatter tail, decreasing the tail probability leads to a higher
asymptotic variance and also to a higher proportion of the asymptotic vari-
ance due to the tail index relative to the scale parameter. This indicates
that the main practical difficulty with fat-tailed models is not so much re-
lated to the variability of the risk measure with respect to the tail index but
with the variance of the tail index estimator. Further on, whether CVaR is
adequate or not depends, generally, on the parametric hypothesis and not
necessarily on the particular functional form of the tail decay. As a conse-
quence, special care should be taken to back-test fat-tailed CVaR models
with small tail probabilities, especially when the data are very heavy-tailed.
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Stable Paretian Student’s t GND

Tail thickness [1.53, 2] [2.66, 19.1] [0.87, 1.79]

Scale [0.007, 0.017] [0.011, 0.048] [0.0055, 0.019]

Table 1: 95% confidence intervals for the tail thickness and the scale param-
eters of the three distribution models.
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Large Medium Small

Stable Paretian, (α̂, σ̂) (1.99, 0.0107) (1.80, 0.0092) (1.69, 0.0084)

Student’s t, (ν̂, σ̂) (11.90, 0.0152) (4.70, 0.0152) (3.52, 0.0159)

GND, (κ̂, σ̂) (1.57, 0.0117) (1.18, 0.0075) (1.02, 0.0058)

Table 2: The fitted tail thickness and scale parameters of the stable Paretian,
Student’s t, and GND laws of the large, medium, and small tail index cases.
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Figure 1: The ratio σ̃(ε) as a function of tail thickness for different val-
ues of the tail probability for stable Paretian laws (top), the Student’s t
distribution (middle), and GND (bottom).
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Figure 2: The ratio given in (28) (left column) and the asymptotic standard
deviation of the CVaR estimator (right column) for tail probability ε ∈
[0.01, 0.4] assuming stable Paretian, Student’s t, and GND laws for stocks
with a large, medium, and small value of the fitted tail index.

28



0 0.02 0.04 0.06 0.08 0.1
0.025

0.03

0.035

0.04

0.045

0.05

Tail probability, ε

C
V

aR
ε(X

)

Large

 

 

Stable Paretian
Student’s t
GND
Historical

0 0.02 0.04 0.06 0.08 0.1
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Tail probability, ε

C
V

aR
ε(X

)

Medium

 

 

Stable Paretian
Student’s t
GND
Historical

0 0.02 0.04 0.06 0.08 0.1
0.02

0.04

0.06

0.08

0.1

0.12

Tail probability, ε

C
V

aR
ε(X

)

Small

 

 

Stable Paretian
Student’s t
GND
Historical

Figure 3: Estimated CVaR as a function of the tail probability ε ∈ [0.01, 0.1]
for stocks with a large, medium, and small value of the fitted tail index as-
suming stable Paretian, Student’s t, GND, and the non-parametric historical
method.
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Figure 4: The tails of the fitted stable Paretian, Student’s t, and GND laws
compared to a kernel estimate of the empirical tail for stocks with a large
(top), medium (middle), and small (bottom) value of the fitted tail index.
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